jamtur01's picture
Upload folder using huggingface_hub
9c6594c verified
#!/usr/bin/env python
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from copy import deepcopy
from enum import Enum
from typing import Dict, List, Optional
from huggingface_hub import InferenceClient
from ..pipelines.base import Pipeline
class MessageRole(str, Enum):
USER = "user"
ASSISTANT = "assistant"
SYSTEM = "system"
TOOL_CALL = "tool-call"
TOOL_RESPONSE = "tool-response"
@classmethod
def roles(cls):
return [r.value for r in cls]
def get_clean_message_list(message_list: List[Dict[str, str]], role_conversions: Dict[str, str] = {}):
"""
Subsequent messages with the same role will be concatenated to a single message.
Args:
message_list (`List[Dict[str, str]]`): List of chat messages.
"""
final_message_list = []
message_list = deepcopy(message_list) # Avoid modifying the original list
for message in message_list:
if not set(message.keys()) == {"role", "content"}:
raise ValueError("Message should contain only 'role' and 'content' keys!")
role = message["role"]
if role not in MessageRole.roles():
raise ValueError(f"Incorrect role {role}, only {MessageRole.roles()} are supported for now.")
if role in role_conversions:
message["role"] = role_conversions[role]
if len(final_message_list) > 0 and message["role"] == final_message_list[-1]["role"]:
final_message_list[-1]["content"] += "\n=======\n" + message["content"]
else:
final_message_list.append(message)
return final_message_list
llama_role_conversions = {
MessageRole.TOOL_RESPONSE: MessageRole.USER,
}
class HfApiEngine:
"""This engine leverages Hugging Face's Inference API service, either serverless or with a dedicated endpoint."""
def __init__(self, model: str = "meta-llama/Meta-Llama-3.1-8B-Instruct"):
self.model = model
self.client = InferenceClient(self.model, timeout=120)
def __call__(
self, messages: List[Dict[str, str]], stop_sequences: List[str] = [], grammar: Optional[str] = None
) -> str:
# Get clean message list
messages = get_clean_message_list(messages, role_conversions=llama_role_conversions)
# Get LLM output
if grammar is not None:
response = self.client.chat_completion(
messages, stop=stop_sequences, max_tokens=1500, response_format=grammar
)
else:
response = self.client.chat_completion(messages, stop=stop_sequences, max_tokens=1500)
response = response.choices[0].message.content
# Remove stop sequences from LLM output
for stop_seq in stop_sequences:
if response[-len(stop_seq) :] == stop_seq:
response = response[: -len(stop_seq)]
return response
class TransformersEngine:
"""This engine uses a pre-initialized local text-generation pipeline."""
def __init__(self, pipeline: Pipeline):
self.pipeline = pipeline
def __call__(
self, messages: List[Dict[str, str]], stop_sequences: Optional[List[str]] = None, grammar: Optional[str] = None
) -> str:
# Get clean message list
messages = get_clean_message_list(messages, role_conversions=llama_role_conversions)
# Get LLM output
output = self.pipeline(
messages,
stop_strings=stop_sequences,
max_length=1500,
tokenizer=self.pipeline.tokenizer,
)
response = output[0]["generated_text"][-1]["content"]
# Remove stop sequences from LLM output
if stop_sequences is not None:
for stop_seq in stop_sequences:
if response[-len(stop_seq) :] == stop_seq:
response = response[: -len(stop_seq)]
return response
DEFAULT_JSONAGENT_REGEX_GRAMMAR = {
"type": "regex",
"value": 'Thought: .+?\\nAction:\\n\\{\\n\\s{4}"action":\\s"[^"\\n]+",\\n\\s{4}"action_input":\\s"[^"\\n]+"\\n\\}\\n<end_action>',
}
DEFAULT_CODEAGENT_REGEX_GRAMMAR = {
"type": "regex",
"value": "Thought: .+?\\nCode:\\n```(?:py|python)?\\n(?:.|\\s)+?\\n```<end_action>",
}