|
import torch |
|
import torch.fx |
|
from torch import nn, Tensor |
|
|
|
from ..utils import _log_api_usage_once |
|
|
|
|
|
def stochastic_depth(input: Tensor, p: float, mode: str, training: bool = True) -> Tensor: |
|
""" |
|
Implements the Stochastic Depth from `"Deep Networks with Stochastic Depth" |
|
<https://arxiv.org/abs/1603.09382>`_ used for randomly dropping residual |
|
branches of residual architectures. |
|
|
|
Args: |
|
input (Tensor[N, ...]): The input tensor or arbitrary dimensions with the first one |
|
being its batch i.e. a batch with ``N`` rows. |
|
p (float): probability of the input to be zeroed. |
|
mode (str): ``"batch"`` or ``"row"``. |
|
``"batch"`` randomly zeroes the entire input, ``"row"`` zeroes |
|
randomly selected rows from the batch. |
|
training: apply stochastic depth if is ``True``. Default: ``True`` |
|
|
|
Returns: |
|
Tensor[N, ...]: The randomly zeroed tensor. |
|
""" |
|
if not torch.jit.is_scripting() and not torch.jit.is_tracing(): |
|
_log_api_usage_once(stochastic_depth) |
|
if p < 0.0 or p > 1.0: |
|
raise ValueError(f"drop probability has to be between 0 and 1, but got {p}") |
|
if mode not in ["batch", "row"]: |
|
raise ValueError(f"mode has to be either 'batch' or 'row', but got {mode}") |
|
if not training or p == 0.0: |
|
return input |
|
|
|
survival_rate = 1.0 - p |
|
if mode == "row": |
|
size = [input.shape[0]] + [1] * (input.ndim - 1) |
|
else: |
|
size = [1] * input.ndim |
|
noise = torch.empty(size, dtype=input.dtype, device=input.device) |
|
noise = noise.bernoulli_(survival_rate) |
|
if survival_rate > 0.0: |
|
noise.div_(survival_rate) |
|
return input * noise |
|
|
|
|
|
torch.fx.wrap("stochastic_depth") |
|
|
|
|
|
class StochasticDepth(nn.Module): |
|
""" |
|
See :func:`stochastic_depth`. |
|
""" |
|
|
|
def __init__(self, p: float, mode: str) -> None: |
|
super().__init__() |
|
_log_api_usage_once(self) |
|
self.p = p |
|
self.mode = mode |
|
|
|
def forward(self, input: Tensor) -> Tensor: |
|
return stochastic_depth(input, self.p, self.mode, self.training) |
|
|
|
def __repr__(self) -> str: |
|
s = f"{self.__class__.__name__}(p={self.p}, mode={self.mode})" |
|
return s |
|
|