|
from functools import partial |
|
from typing import Any, Callable, List, Optional, Sequence, Tuple, Type, Union |
|
|
|
import torch.nn as nn |
|
from torch import Tensor |
|
|
|
from ...transforms._presets import VideoClassification |
|
from ...utils import _log_api_usage_once |
|
from .._api import register_model, Weights, WeightsEnum |
|
from .._meta import _KINETICS400_CATEGORIES |
|
from .._utils import _ovewrite_named_param, handle_legacy_interface |
|
|
|
|
|
__all__ = [ |
|
"VideoResNet", |
|
"R3D_18_Weights", |
|
"MC3_18_Weights", |
|
"R2Plus1D_18_Weights", |
|
"r3d_18", |
|
"mc3_18", |
|
"r2plus1d_18", |
|
] |
|
|
|
|
|
class Conv3DSimple(nn.Conv3d): |
|
def __init__( |
|
self, in_planes: int, out_planes: int, midplanes: Optional[int] = None, stride: int = 1, padding: int = 1 |
|
) -> None: |
|
|
|
super().__init__( |
|
in_channels=in_planes, |
|
out_channels=out_planes, |
|
kernel_size=(3, 3, 3), |
|
stride=stride, |
|
padding=padding, |
|
bias=False, |
|
) |
|
|
|
@staticmethod |
|
def get_downsample_stride(stride: int) -> Tuple[int, int, int]: |
|
return stride, stride, stride |
|
|
|
|
|
class Conv2Plus1D(nn.Sequential): |
|
def __init__(self, in_planes: int, out_planes: int, midplanes: int, stride: int = 1, padding: int = 1) -> None: |
|
super().__init__( |
|
nn.Conv3d( |
|
in_planes, |
|
midplanes, |
|
kernel_size=(1, 3, 3), |
|
stride=(1, stride, stride), |
|
padding=(0, padding, padding), |
|
bias=False, |
|
), |
|
nn.BatchNorm3d(midplanes), |
|
nn.ReLU(inplace=True), |
|
nn.Conv3d( |
|
midplanes, out_planes, kernel_size=(3, 1, 1), stride=(stride, 1, 1), padding=(padding, 0, 0), bias=False |
|
), |
|
) |
|
|
|
@staticmethod |
|
def get_downsample_stride(stride: int) -> Tuple[int, int, int]: |
|
return stride, stride, stride |
|
|
|
|
|
class Conv3DNoTemporal(nn.Conv3d): |
|
def __init__( |
|
self, in_planes: int, out_planes: int, midplanes: Optional[int] = None, stride: int = 1, padding: int = 1 |
|
) -> None: |
|
|
|
super().__init__( |
|
in_channels=in_planes, |
|
out_channels=out_planes, |
|
kernel_size=(1, 3, 3), |
|
stride=(1, stride, stride), |
|
padding=(0, padding, padding), |
|
bias=False, |
|
) |
|
|
|
@staticmethod |
|
def get_downsample_stride(stride: int) -> Tuple[int, int, int]: |
|
return 1, stride, stride |
|
|
|
|
|
class BasicBlock(nn.Module): |
|
|
|
expansion = 1 |
|
|
|
def __init__( |
|
self, |
|
inplanes: int, |
|
planes: int, |
|
conv_builder: Callable[..., nn.Module], |
|
stride: int = 1, |
|
downsample: Optional[nn.Module] = None, |
|
) -> None: |
|
midplanes = (inplanes * planes * 3 * 3 * 3) // (inplanes * 3 * 3 + 3 * planes) |
|
|
|
super().__init__() |
|
self.conv1 = nn.Sequential( |
|
conv_builder(inplanes, planes, midplanes, stride), nn.BatchNorm3d(planes), nn.ReLU(inplace=True) |
|
) |
|
self.conv2 = nn.Sequential(conv_builder(planes, planes, midplanes), nn.BatchNorm3d(planes)) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.downsample = downsample |
|
self.stride = stride |
|
|
|
def forward(self, x: Tensor) -> Tensor: |
|
residual = x |
|
|
|
out = self.conv1(x) |
|
out = self.conv2(out) |
|
if self.downsample is not None: |
|
residual = self.downsample(x) |
|
|
|
out += residual |
|
out = self.relu(out) |
|
|
|
return out |
|
|
|
|
|
class Bottleneck(nn.Module): |
|
expansion = 4 |
|
|
|
def __init__( |
|
self, |
|
inplanes: int, |
|
planes: int, |
|
conv_builder: Callable[..., nn.Module], |
|
stride: int = 1, |
|
downsample: Optional[nn.Module] = None, |
|
) -> None: |
|
|
|
super().__init__() |
|
midplanes = (inplanes * planes * 3 * 3 * 3) // (inplanes * 3 * 3 + 3 * planes) |
|
|
|
|
|
self.conv1 = nn.Sequential( |
|
nn.Conv3d(inplanes, planes, kernel_size=1, bias=False), nn.BatchNorm3d(planes), nn.ReLU(inplace=True) |
|
) |
|
|
|
self.conv2 = nn.Sequential( |
|
conv_builder(planes, planes, midplanes, stride), nn.BatchNorm3d(planes), nn.ReLU(inplace=True) |
|
) |
|
|
|
|
|
self.conv3 = nn.Sequential( |
|
nn.Conv3d(planes, planes * self.expansion, kernel_size=1, bias=False), |
|
nn.BatchNorm3d(planes * self.expansion), |
|
) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.downsample = downsample |
|
self.stride = stride |
|
|
|
def forward(self, x: Tensor) -> Tensor: |
|
residual = x |
|
|
|
out = self.conv1(x) |
|
out = self.conv2(out) |
|
out = self.conv3(out) |
|
|
|
if self.downsample is not None: |
|
residual = self.downsample(x) |
|
|
|
out += residual |
|
out = self.relu(out) |
|
|
|
return out |
|
|
|
|
|
class BasicStem(nn.Sequential): |
|
"""The default conv-batchnorm-relu stem""" |
|
|
|
def __init__(self) -> None: |
|
super().__init__( |
|
nn.Conv3d(3, 64, kernel_size=(3, 7, 7), stride=(1, 2, 2), padding=(1, 3, 3), bias=False), |
|
nn.BatchNorm3d(64), |
|
nn.ReLU(inplace=True), |
|
) |
|
|
|
|
|
class R2Plus1dStem(nn.Sequential): |
|
"""R(2+1)D stem is different than the default one as it uses separated 3D convolution""" |
|
|
|
def __init__(self) -> None: |
|
super().__init__( |
|
nn.Conv3d(3, 45, kernel_size=(1, 7, 7), stride=(1, 2, 2), padding=(0, 3, 3), bias=False), |
|
nn.BatchNorm3d(45), |
|
nn.ReLU(inplace=True), |
|
nn.Conv3d(45, 64, kernel_size=(3, 1, 1), stride=(1, 1, 1), padding=(1, 0, 0), bias=False), |
|
nn.BatchNorm3d(64), |
|
nn.ReLU(inplace=True), |
|
) |
|
|
|
|
|
class VideoResNet(nn.Module): |
|
def __init__( |
|
self, |
|
block: Type[Union[BasicBlock, Bottleneck]], |
|
conv_makers: Sequence[Type[Union[Conv3DSimple, Conv3DNoTemporal, Conv2Plus1D]]], |
|
layers: List[int], |
|
stem: Callable[..., nn.Module], |
|
num_classes: int = 400, |
|
zero_init_residual: bool = False, |
|
) -> None: |
|
"""Generic resnet video generator. |
|
|
|
Args: |
|
block (Type[Union[BasicBlock, Bottleneck]]): resnet building block |
|
conv_makers (List[Type[Union[Conv3DSimple, Conv3DNoTemporal, Conv2Plus1D]]]): generator |
|
function for each layer |
|
layers (List[int]): number of blocks per layer |
|
stem (Callable[..., nn.Module]): module specifying the ResNet stem. |
|
num_classes (int, optional): Dimension of the final FC layer. Defaults to 400. |
|
zero_init_residual (bool, optional): Zero init bottleneck residual BN. Defaults to False. |
|
""" |
|
super().__init__() |
|
_log_api_usage_once(self) |
|
self.inplanes = 64 |
|
|
|
self.stem = stem() |
|
|
|
self.layer1 = self._make_layer(block, conv_makers[0], 64, layers[0], stride=1) |
|
self.layer2 = self._make_layer(block, conv_makers[1], 128, layers[1], stride=2) |
|
self.layer3 = self._make_layer(block, conv_makers[2], 256, layers[2], stride=2) |
|
self.layer4 = self._make_layer(block, conv_makers[3], 512, layers[3], stride=2) |
|
|
|
self.avgpool = nn.AdaptiveAvgPool3d((1, 1, 1)) |
|
self.fc = nn.Linear(512 * block.expansion, num_classes) |
|
|
|
|
|
for m in self.modules(): |
|
if isinstance(m, nn.Conv3d): |
|
nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu") |
|
if m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.BatchNorm3d): |
|
nn.init.constant_(m.weight, 1) |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.Linear): |
|
nn.init.normal_(m.weight, 0, 0.01) |
|
nn.init.constant_(m.bias, 0) |
|
|
|
if zero_init_residual: |
|
for m in self.modules(): |
|
if isinstance(m, Bottleneck): |
|
nn.init.constant_(m.bn3.weight, 0) |
|
|
|
def forward(self, x: Tensor) -> Tensor: |
|
x = self.stem(x) |
|
|
|
x = self.layer1(x) |
|
x = self.layer2(x) |
|
x = self.layer3(x) |
|
x = self.layer4(x) |
|
|
|
x = self.avgpool(x) |
|
|
|
x = x.flatten(1) |
|
x = self.fc(x) |
|
|
|
return x |
|
|
|
def _make_layer( |
|
self, |
|
block: Type[Union[BasicBlock, Bottleneck]], |
|
conv_builder: Type[Union[Conv3DSimple, Conv3DNoTemporal, Conv2Plus1D]], |
|
planes: int, |
|
blocks: int, |
|
stride: int = 1, |
|
) -> nn.Sequential: |
|
downsample = None |
|
|
|
if stride != 1 or self.inplanes != planes * block.expansion: |
|
ds_stride = conv_builder.get_downsample_stride(stride) |
|
downsample = nn.Sequential( |
|
nn.Conv3d(self.inplanes, planes * block.expansion, kernel_size=1, stride=ds_stride, bias=False), |
|
nn.BatchNorm3d(planes * block.expansion), |
|
) |
|
layers = [] |
|
layers.append(block(self.inplanes, planes, conv_builder, stride, downsample)) |
|
|
|
self.inplanes = planes * block.expansion |
|
for i in range(1, blocks): |
|
layers.append(block(self.inplanes, planes, conv_builder)) |
|
|
|
return nn.Sequential(*layers) |
|
|
|
|
|
def _video_resnet( |
|
block: Type[Union[BasicBlock, Bottleneck]], |
|
conv_makers: Sequence[Type[Union[Conv3DSimple, Conv3DNoTemporal, Conv2Plus1D]]], |
|
layers: List[int], |
|
stem: Callable[..., nn.Module], |
|
weights: Optional[WeightsEnum], |
|
progress: bool, |
|
**kwargs: Any, |
|
) -> VideoResNet: |
|
if weights is not None: |
|
_ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"])) |
|
|
|
model = VideoResNet(block, conv_makers, layers, stem, **kwargs) |
|
|
|
if weights is not None: |
|
model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True)) |
|
|
|
return model |
|
|
|
|
|
_COMMON_META = { |
|
"min_size": (1, 1), |
|
"categories": _KINETICS400_CATEGORIES, |
|
"recipe": "https://github.com/pytorch/vision/tree/main/references/video_classification", |
|
"_docs": ( |
|
"The weights reproduce closely the accuracy of the paper. The accuracies are estimated on video-level " |
|
"with parameters `frame_rate=15`, `clips_per_video=5`, and `clip_len=16`." |
|
), |
|
} |
|
|
|
|
|
class R3D_18_Weights(WeightsEnum): |
|
KINETICS400_V1 = Weights( |
|
url="https://download.pytorch.org/models/r3d_18-b3b3357e.pth", |
|
transforms=partial(VideoClassification, crop_size=(112, 112), resize_size=(128, 171)), |
|
meta={ |
|
**_COMMON_META, |
|
"num_params": 33371472, |
|
"_metrics": { |
|
"Kinetics-400": { |
|
"acc@1": 63.200, |
|
"acc@5": 83.479, |
|
} |
|
}, |
|
"_ops": 40.697, |
|
"_file_size": 127.359, |
|
}, |
|
) |
|
DEFAULT = KINETICS400_V1 |
|
|
|
|
|
class MC3_18_Weights(WeightsEnum): |
|
KINETICS400_V1 = Weights( |
|
url="https://download.pytorch.org/models/mc3_18-a90a0ba3.pth", |
|
transforms=partial(VideoClassification, crop_size=(112, 112), resize_size=(128, 171)), |
|
meta={ |
|
**_COMMON_META, |
|
"num_params": 11695440, |
|
"_metrics": { |
|
"Kinetics-400": { |
|
"acc@1": 63.960, |
|
"acc@5": 84.130, |
|
} |
|
}, |
|
"_ops": 43.343, |
|
"_file_size": 44.672, |
|
}, |
|
) |
|
DEFAULT = KINETICS400_V1 |
|
|
|
|
|
class R2Plus1D_18_Weights(WeightsEnum): |
|
KINETICS400_V1 = Weights( |
|
url="https://download.pytorch.org/models/r2plus1d_18-91a641e6.pth", |
|
transforms=partial(VideoClassification, crop_size=(112, 112), resize_size=(128, 171)), |
|
meta={ |
|
**_COMMON_META, |
|
"num_params": 31505325, |
|
"_metrics": { |
|
"Kinetics-400": { |
|
"acc@1": 67.463, |
|
"acc@5": 86.175, |
|
} |
|
}, |
|
"_ops": 40.519, |
|
"_file_size": 120.318, |
|
}, |
|
) |
|
DEFAULT = KINETICS400_V1 |
|
|
|
|
|
@register_model() |
|
@handle_legacy_interface(weights=("pretrained", R3D_18_Weights.KINETICS400_V1)) |
|
def r3d_18(*, weights: Optional[R3D_18_Weights] = None, progress: bool = True, **kwargs: Any) -> VideoResNet: |
|
"""Construct 18 layer Resnet3D model. |
|
|
|
.. betastatus:: video module |
|
|
|
Reference: `A Closer Look at Spatiotemporal Convolutions for Action Recognition <https://arxiv.org/abs/1711.11248>`__. |
|
|
|
Args: |
|
weights (:class:`~torchvision.models.video.R3D_18_Weights`, optional): The |
|
pretrained weights to use. See |
|
:class:`~torchvision.models.video.R3D_18_Weights` |
|
below for more details, and possible values. By default, no |
|
pre-trained weights are used. |
|
progress (bool): If True, displays a progress bar of the download to stderr. Default is True. |
|
**kwargs: parameters passed to the ``torchvision.models.video.resnet.VideoResNet`` base class. |
|
Please refer to the `source code |
|
<https://github.com/pytorch/vision/blob/main/torchvision/models/video/resnet.py>`_ |
|
for more details about this class. |
|
|
|
.. autoclass:: torchvision.models.video.R3D_18_Weights |
|
:members: |
|
""" |
|
weights = R3D_18_Weights.verify(weights) |
|
|
|
return _video_resnet( |
|
BasicBlock, |
|
[Conv3DSimple] * 4, |
|
[2, 2, 2, 2], |
|
BasicStem, |
|
weights, |
|
progress, |
|
**kwargs, |
|
) |
|
|
|
|
|
@register_model() |
|
@handle_legacy_interface(weights=("pretrained", MC3_18_Weights.KINETICS400_V1)) |
|
def mc3_18(*, weights: Optional[MC3_18_Weights] = None, progress: bool = True, **kwargs: Any) -> VideoResNet: |
|
"""Construct 18 layer Mixed Convolution network as in |
|
|
|
.. betastatus:: video module |
|
|
|
Reference: `A Closer Look at Spatiotemporal Convolutions for Action Recognition <https://arxiv.org/abs/1711.11248>`__. |
|
|
|
Args: |
|
weights (:class:`~torchvision.models.video.MC3_18_Weights`, optional): The |
|
pretrained weights to use. See |
|
:class:`~torchvision.models.video.MC3_18_Weights` |
|
below for more details, and possible values. By default, no |
|
pre-trained weights are used. |
|
progress (bool): If True, displays a progress bar of the download to stderr. Default is True. |
|
**kwargs: parameters passed to the ``torchvision.models.video.resnet.VideoResNet`` base class. |
|
Please refer to the `source code |
|
<https://github.com/pytorch/vision/blob/main/torchvision/models/video/resnet.py>`_ |
|
for more details about this class. |
|
|
|
.. autoclass:: torchvision.models.video.MC3_18_Weights |
|
:members: |
|
""" |
|
weights = MC3_18_Weights.verify(weights) |
|
|
|
return _video_resnet( |
|
BasicBlock, |
|
[Conv3DSimple] + [Conv3DNoTemporal] * 3, |
|
[2, 2, 2, 2], |
|
BasicStem, |
|
weights, |
|
progress, |
|
**kwargs, |
|
) |
|
|
|
|
|
@register_model() |
|
@handle_legacy_interface(weights=("pretrained", R2Plus1D_18_Weights.KINETICS400_V1)) |
|
def r2plus1d_18(*, weights: Optional[R2Plus1D_18_Weights] = None, progress: bool = True, **kwargs: Any) -> VideoResNet: |
|
"""Construct 18 layer deep R(2+1)D network as in |
|
|
|
.. betastatus:: video module |
|
|
|
Reference: `A Closer Look at Spatiotemporal Convolutions for Action Recognition <https://arxiv.org/abs/1711.11248>`__. |
|
|
|
Args: |
|
weights (:class:`~torchvision.models.video.R2Plus1D_18_Weights`, optional): The |
|
pretrained weights to use. See |
|
:class:`~torchvision.models.video.R2Plus1D_18_Weights` |
|
below for more details, and possible values. By default, no |
|
pre-trained weights are used. |
|
progress (bool): If True, displays a progress bar of the download to stderr. Default is True. |
|
**kwargs: parameters passed to the ``torchvision.models.video.resnet.VideoResNet`` base class. |
|
Please refer to the `source code |
|
<https://github.com/pytorch/vision/blob/main/torchvision/models/video/resnet.py>`_ |
|
for more details about this class. |
|
|
|
.. autoclass:: torchvision.models.video.R2Plus1D_18_Weights |
|
:members: |
|
""" |
|
weights = R2Plus1D_18_Weights.verify(weights) |
|
|
|
return _video_resnet( |
|
BasicBlock, |
|
[Conv2Plus1D] * 4, |
|
[2, 2, 2, 2], |
|
R2Plus1dStem, |
|
weights, |
|
progress, |
|
**kwargs, |
|
) |
|
|
|
|
|
|
|
from .._utils import _ModelURLs |
|
|
|
|
|
model_urls = _ModelURLs( |
|
{ |
|
"r3d_18": R3D_18_Weights.KINETICS400_V1.url, |
|
"mc3_18": MC3_18_Weights.KINETICS400_V1.url, |
|
"r2plus1d_18": R2Plus1D_18_Weights.KINETICS400_V1.url, |
|
} |
|
) |
|
|