|
from functools import partial |
|
from typing import Any, Callable, List, Optional |
|
|
|
import torch |
|
import torch.nn as nn |
|
from torch import Tensor |
|
|
|
from ..transforms._presets import ImageClassification |
|
from ..utils import _log_api_usage_once |
|
from ._api import register_model, Weights, WeightsEnum |
|
from ._meta import _IMAGENET_CATEGORIES |
|
from ._utils import _ovewrite_named_param, handle_legacy_interface |
|
|
|
|
|
__all__ = [ |
|
"ShuffleNetV2", |
|
"ShuffleNet_V2_X0_5_Weights", |
|
"ShuffleNet_V2_X1_0_Weights", |
|
"ShuffleNet_V2_X1_5_Weights", |
|
"ShuffleNet_V2_X2_0_Weights", |
|
"shufflenet_v2_x0_5", |
|
"shufflenet_v2_x1_0", |
|
"shufflenet_v2_x1_5", |
|
"shufflenet_v2_x2_0", |
|
] |
|
|
|
|
|
def channel_shuffle(x: Tensor, groups: int) -> Tensor: |
|
batchsize, num_channels, height, width = x.size() |
|
channels_per_group = num_channels // groups |
|
|
|
|
|
x = x.view(batchsize, groups, channels_per_group, height, width) |
|
|
|
x = torch.transpose(x, 1, 2).contiguous() |
|
|
|
|
|
x = x.view(batchsize, num_channels, height, width) |
|
|
|
return x |
|
|
|
|
|
class InvertedResidual(nn.Module): |
|
def __init__(self, inp: int, oup: int, stride: int) -> None: |
|
super().__init__() |
|
|
|
if not (1 <= stride <= 3): |
|
raise ValueError("illegal stride value") |
|
self.stride = stride |
|
|
|
branch_features = oup // 2 |
|
if (self.stride == 1) and (inp != branch_features << 1): |
|
raise ValueError( |
|
f"Invalid combination of stride {stride}, inp {inp} and oup {oup} values. If stride == 1 then inp should be equal to oup // 2 << 1." |
|
) |
|
|
|
if self.stride > 1: |
|
self.branch1 = nn.Sequential( |
|
self.depthwise_conv(inp, inp, kernel_size=3, stride=self.stride, padding=1), |
|
nn.BatchNorm2d(inp), |
|
nn.Conv2d(inp, branch_features, kernel_size=1, stride=1, padding=0, bias=False), |
|
nn.BatchNorm2d(branch_features), |
|
nn.ReLU(inplace=True), |
|
) |
|
else: |
|
self.branch1 = nn.Sequential() |
|
|
|
self.branch2 = nn.Sequential( |
|
nn.Conv2d( |
|
inp if (self.stride > 1) else branch_features, |
|
branch_features, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0, |
|
bias=False, |
|
), |
|
nn.BatchNorm2d(branch_features), |
|
nn.ReLU(inplace=True), |
|
self.depthwise_conv(branch_features, branch_features, kernel_size=3, stride=self.stride, padding=1), |
|
nn.BatchNorm2d(branch_features), |
|
nn.Conv2d(branch_features, branch_features, kernel_size=1, stride=1, padding=0, bias=False), |
|
nn.BatchNorm2d(branch_features), |
|
nn.ReLU(inplace=True), |
|
) |
|
|
|
@staticmethod |
|
def depthwise_conv( |
|
i: int, o: int, kernel_size: int, stride: int = 1, padding: int = 0, bias: bool = False |
|
) -> nn.Conv2d: |
|
return nn.Conv2d(i, o, kernel_size, stride, padding, bias=bias, groups=i) |
|
|
|
def forward(self, x: Tensor) -> Tensor: |
|
if self.stride == 1: |
|
x1, x2 = x.chunk(2, dim=1) |
|
out = torch.cat((x1, self.branch2(x2)), dim=1) |
|
else: |
|
out = torch.cat((self.branch1(x), self.branch2(x)), dim=1) |
|
|
|
out = channel_shuffle(out, 2) |
|
|
|
return out |
|
|
|
|
|
class ShuffleNetV2(nn.Module): |
|
def __init__( |
|
self, |
|
stages_repeats: List[int], |
|
stages_out_channels: List[int], |
|
num_classes: int = 1000, |
|
inverted_residual: Callable[..., nn.Module] = InvertedResidual, |
|
) -> None: |
|
super().__init__() |
|
_log_api_usage_once(self) |
|
|
|
if len(stages_repeats) != 3: |
|
raise ValueError("expected stages_repeats as list of 3 positive ints") |
|
if len(stages_out_channels) != 5: |
|
raise ValueError("expected stages_out_channels as list of 5 positive ints") |
|
self._stage_out_channels = stages_out_channels |
|
|
|
input_channels = 3 |
|
output_channels = self._stage_out_channels[0] |
|
self.conv1 = nn.Sequential( |
|
nn.Conv2d(input_channels, output_channels, 3, 2, 1, bias=False), |
|
nn.BatchNorm2d(output_channels), |
|
nn.ReLU(inplace=True), |
|
) |
|
input_channels = output_channels |
|
|
|
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) |
|
|
|
|
|
self.stage2: nn.Sequential |
|
self.stage3: nn.Sequential |
|
self.stage4: nn.Sequential |
|
stage_names = [f"stage{i}" for i in [2, 3, 4]] |
|
for name, repeats, output_channels in zip(stage_names, stages_repeats, self._stage_out_channels[1:]): |
|
seq = [inverted_residual(input_channels, output_channels, 2)] |
|
for i in range(repeats - 1): |
|
seq.append(inverted_residual(output_channels, output_channels, 1)) |
|
setattr(self, name, nn.Sequential(*seq)) |
|
input_channels = output_channels |
|
|
|
output_channels = self._stage_out_channels[-1] |
|
self.conv5 = nn.Sequential( |
|
nn.Conv2d(input_channels, output_channels, 1, 1, 0, bias=False), |
|
nn.BatchNorm2d(output_channels), |
|
nn.ReLU(inplace=True), |
|
) |
|
|
|
self.fc = nn.Linear(output_channels, num_classes) |
|
|
|
def _forward_impl(self, x: Tensor) -> Tensor: |
|
|
|
x = self.conv1(x) |
|
x = self.maxpool(x) |
|
x = self.stage2(x) |
|
x = self.stage3(x) |
|
x = self.stage4(x) |
|
x = self.conv5(x) |
|
x = x.mean([2, 3]) |
|
x = self.fc(x) |
|
return x |
|
|
|
def forward(self, x: Tensor) -> Tensor: |
|
return self._forward_impl(x) |
|
|
|
|
|
def _shufflenetv2( |
|
weights: Optional[WeightsEnum], |
|
progress: bool, |
|
*args: Any, |
|
**kwargs: Any, |
|
) -> ShuffleNetV2: |
|
if weights is not None: |
|
_ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"])) |
|
|
|
model = ShuffleNetV2(*args, **kwargs) |
|
|
|
if weights is not None: |
|
model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True)) |
|
|
|
return model |
|
|
|
|
|
_COMMON_META = { |
|
"min_size": (1, 1), |
|
"categories": _IMAGENET_CATEGORIES, |
|
"recipe": "https://github.com/ericsun99/Shufflenet-v2-Pytorch", |
|
} |
|
|
|
|
|
class ShuffleNet_V2_X0_5_Weights(WeightsEnum): |
|
IMAGENET1K_V1 = Weights( |
|
|
|
url="https://download.pytorch.org/models/shufflenetv2_x0.5-f707e7126e.pth", |
|
transforms=partial(ImageClassification, crop_size=224), |
|
meta={ |
|
**_COMMON_META, |
|
"num_params": 1366792, |
|
"_metrics": { |
|
"ImageNet-1K": { |
|
"acc@1": 60.552, |
|
"acc@5": 81.746, |
|
} |
|
}, |
|
"_ops": 0.04, |
|
"_file_size": 5.282, |
|
"_docs": """These weights were trained from scratch to reproduce closely the results of the paper.""", |
|
}, |
|
) |
|
DEFAULT = IMAGENET1K_V1 |
|
|
|
|
|
class ShuffleNet_V2_X1_0_Weights(WeightsEnum): |
|
IMAGENET1K_V1 = Weights( |
|
|
|
url="https://download.pytorch.org/models/shufflenetv2_x1-5666bf0f80.pth", |
|
transforms=partial(ImageClassification, crop_size=224), |
|
meta={ |
|
**_COMMON_META, |
|
"num_params": 2278604, |
|
"_metrics": { |
|
"ImageNet-1K": { |
|
"acc@1": 69.362, |
|
"acc@5": 88.316, |
|
} |
|
}, |
|
"_ops": 0.145, |
|
"_file_size": 8.791, |
|
"_docs": """These weights were trained from scratch to reproduce closely the results of the paper.""", |
|
}, |
|
) |
|
DEFAULT = IMAGENET1K_V1 |
|
|
|
|
|
class ShuffleNet_V2_X1_5_Weights(WeightsEnum): |
|
IMAGENET1K_V1 = Weights( |
|
url="https://download.pytorch.org/models/shufflenetv2_x1_5-3c479a10.pth", |
|
transforms=partial(ImageClassification, crop_size=224, resize_size=232), |
|
meta={ |
|
**_COMMON_META, |
|
"recipe": "https://github.com/pytorch/vision/pull/5906", |
|
"num_params": 3503624, |
|
"_metrics": { |
|
"ImageNet-1K": { |
|
"acc@1": 72.996, |
|
"acc@5": 91.086, |
|
} |
|
}, |
|
"_ops": 0.296, |
|
"_file_size": 13.557, |
|
"_docs": """ |
|
These weights were trained from scratch by using TorchVision's `new training recipe |
|
<https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_. |
|
""", |
|
}, |
|
) |
|
DEFAULT = IMAGENET1K_V1 |
|
|
|
|
|
class ShuffleNet_V2_X2_0_Weights(WeightsEnum): |
|
IMAGENET1K_V1 = Weights( |
|
url="https://download.pytorch.org/models/shufflenetv2_x2_0-8be3c8ee.pth", |
|
transforms=partial(ImageClassification, crop_size=224, resize_size=232), |
|
meta={ |
|
**_COMMON_META, |
|
"recipe": "https://github.com/pytorch/vision/pull/5906", |
|
"num_params": 7393996, |
|
"_metrics": { |
|
"ImageNet-1K": { |
|
"acc@1": 76.230, |
|
"acc@5": 93.006, |
|
} |
|
}, |
|
"_ops": 0.583, |
|
"_file_size": 28.433, |
|
"_docs": """ |
|
These weights were trained from scratch by using TorchVision's `new training recipe |
|
<https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_. |
|
""", |
|
}, |
|
) |
|
DEFAULT = IMAGENET1K_V1 |
|
|
|
|
|
@register_model() |
|
@handle_legacy_interface(weights=("pretrained", ShuffleNet_V2_X0_5_Weights.IMAGENET1K_V1)) |
|
def shufflenet_v2_x0_5( |
|
*, weights: Optional[ShuffleNet_V2_X0_5_Weights] = None, progress: bool = True, **kwargs: Any |
|
) -> ShuffleNetV2: |
|
""" |
|
Constructs a ShuffleNetV2 architecture with 0.5x output channels, as described in |
|
`ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design |
|
<https://arxiv.org/abs/1807.11164>`__. |
|
|
|
Args: |
|
weights (:class:`~torchvision.models.ShuffleNet_V2_X0_5_Weights`, optional): The |
|
pretrained weights to use. See |
|
:class:`~torchvision.models.ShuffleNet_V2_X0_5_Weights` below for |
|
more details, and possible values. By default, no pre-trained |
|
weights are used. |
|
progress (bool, optional): If True, displays a progress bar of the |
|
download to stderr. Default is True. |
|
**kwargs: parameters passed to the ``torchvision.models.shufflenetv2.ShuffleNetV2`` |
|
base class. Please refer to the `source code |
|
<https://github.com/pytorch/vision/blob/main/torchvision/models/shufflenetv2.py>`_ |
|
for more details about this class. |
|
|
|
.. autoclass:: torchvision.models.ShuffleNet_V2_X0_5_Weights |
|
:members: |
|
""" |
|
weights = ShuffleNet_V2_X0_5_Weights.verify(weights) |
|
|
|
return _shufflenetv2(weights, progress, [4, 8, 4], [24, 48, 96, 192, 1024], **kwargs) |
|
|
|
|
|
@register_model() |
|
@handle_legacy_interface(weights=("pretrained", ShuffleNet_V2_X1_0_Weights.IMAGENET1K_V1)) |
|
def shufflenet_v2_x1_0( |
|
*, weights: Optional[ShuffleNet_V2_X1_0_Weights] = None, progress: bool = True, **kwargs: Any |
|
) -> ShuffleNetV2: |
|
""" |
|
Constructs a ShuffleNetV2 architecture with 1.0x output channels, as described in |
|
`ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design |
|
<https://arxiv.org/abs/1807.11164>`__. |
|
|
|
Args: |
|
weights (:class:`~torchvision.models.ShuffleNet_V2_X1_0_Weights`, optional): The |
|
pretrained weights to use. See |
|
:class:`~torchvision.models.ShuffleNet_V2_X1_0_Weights` below for |
|
more details, and possible values. By default, no pre-trained |
|
weights are used. |
|
progress (bool, optional): If True, displays a progress bar of the |
|
download to stderr. Default is True. |
|
**kwargs: parameters passed to the ``torchvision.models.shufflenetv2.ShuffleNetV2`` |
|
base class. Please refer to the `source code |
|
<https://github.com/pytorch/vision/blob/main/torchvision/models/shufflenetv2.py>`_ |
|
for more details about this class. |
|
|
|
.. autoclass:: torchvision.models.ShuffleNet_V2_X1_0_Weights |
|
:members: |
|
""" |
|
weights = ShuffleNet_V2_X1_0_Weights.verify(weights) |
|
|
|
return _shufflenetv2(weights, progress, [4, 8, 4], [24, 116, 232, 464, 1024], **kwargs) |
|
|
|
|
|
@register_model() |
|
@handle_legacy_interface(weights=("pretrained", ShuffleNet_V2_X1_5_Weights.IMAGENET1K_V1)) |
|
def shufflenet_v2_x1_5( |
|
*, weights: Optional[ShuffleNet_V2_X1_5_Weights] = None, progress: bool = True, **kwargs: Any |
|
) -> ShuffleNetV2: |
|
""" |
|
Constructs a ShuffleNetV2 architecture with 1.5x output channels, as described in |
|
`ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design |
|
<https://arxiv.org/abs/1807.11164>`__. |
|
|
|
Args: |
|
weights (:class:`~torchvision.models.ShuffleNet_V2_X1_5_Weights`, optional): The |
|
pretrained weights to use. See |
|
:class:`~torchvision.models.ShuffleNet_V2_X1_5_Weights` below for |
|
more details, and possible values. By default, no pre-trained |
|
weights are used. |
|
progress (bool, optional): If True, displays a progress bar of the |
|
download to stderr. Default is True. |
|
**kwargs: parameters passed to the ``torchvision.models.shufflenetv2.ShuffleNetV2`` |
|
base class. Please refer to the `source code |
|
<https://github.com/pytorch/vision/blob/main/torchvision/models/shufflenetv2.py>`_ |
|
for more details about this class. |
|
|
|
.. autoclass:: torchvision.models.ShuffleNet_V2_X1_5_Weights |
|
:members: |
|
""" |
|
weights = ShuffleNet_V2_X1_5_Weights.verify(weights) |
|
|
|
return _shufflenetv2(weights, progress, [4, 8, 4], [24, 176, 352, 704, 1024], **kwargs) |
|
|
|
|
|
@register_model() |
|
@handle_legacy_interface(weights=("pretrained", ShuffleNet_V2_X2_0_Weights.IMAGENET1K_V1)) |
|
def shufflenet_v2_x2_0( |
|
*, weights: Optional[ShuffleNet_V2_X2_0_Weights] = None, progress: bool = True, **kwargs: Any |
|
) -> ShuffleNetV2: |
|
""" |
|
Constructs a ShuffleNetV2 architecture with 2.0x output channels, as described in |
|
`ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design |
|
<https://arxiv.org/abs/1807.11164>`__. |
|
|
|
Args: |
|
weights (:class:`~torchvision.models.ShuffleNet_V2_X2_0_Weights`, optional): The |
|
pretrained weights to use. See |
|
:class:`~torchvision.models.ShuffleNet_V2_X2_0_Weights` below for |
|
more details, and possible values. By default, no pre-trained |
|
weights are used. |
|
progress (bool, optional): If True, displays a progress bar of the |
|
download to stderr. Default is True. |
|
**kwargs: parameters passed to the ``torchvision.models.shufflenetv2.ShuffleNetV2`` |
|
base class. Please refer to the `source code |
|
<https://github.com/pytorch/vision/blob/main/torchvision/models/shufflenetv2.py>`_ |
|
for more details about this class. |
|
|
|
.. autoclass:: torchvision.models.ShuffleNet_V2_X2_0_Weights |
|
:members: |
|
""" |
|
weights = ShuffleNet_V2_X2_0_Weights.verify(weights) |
|
|
|
return _shufflenetv2(weights, progress, [4, 8, 4], [24, 244, 488, 976, 2048], **kwargs) |
|
|