|
from collections import OrderedDict |
|
from functools import partial |
|
from typing import Any, Dict, Optional |
|
|
|
from torch import nn, Tensor |
|
from torch.nn import functional as F |
|
|
|
from ...transforms._presets import SemanticSegmentation |
|
from ...utils import _log_api_usage_once |
|
from .._api import register_model, Weights, WeightsEnum |
|
from .._meta import _VOC_CATEGORIES |
|
from .._utils import _ovewrite_value_param, handle_legacy_interface, IntermediateLayerGetter |
|
from ..mobilenetv3 import mobilenet_v3_large, MobileNet_V3_Large_Weights, MobileNetV3 |
|
|
|
|
|
__all__ = ["LRASPP", "LRASPP_MobileNet_V3_Large_Weights", "lraspp_mobilenet_v3_large"] |
|
|
|
|
|
class LRASPP(nn.Module): |
|
""" |
|
Implements a Lite R-ASPP Network for semantic segmentation from |
|
`"Searching for MobileNetV3" |
|
<https://arxiv.org/abs/1905.02244>`_. |
|
|
|
Args: |
|
backbone (nn.Module): the network used to compute the features for the model. |
|
The backbone should return an OrderedDict[Tensor], with the key being |
|
"high" for the high level feature map and "low" for the low level feature map. |
|
low_channels (int): the number of channels of the low level features. |
|
high_channels (int): the number of channels of the high level features. |
|
num_classes (int, optional): number of output classes of the model (including the background). |
|
inter_channels (int, optional): the number of channels for intermediate computations. |
|
""" |
|
|
|
def __init__( |
|
self, backbone: nn.Module, low_channels: int, high_channels: int, num_classes: int, inter_channels: int = 128 |
|
) -> None: |
|
super().__init__() |
|
_log_api_usage_once(self) |
|
self.backbone = backbone |
|
self.classifier = LRASPPHead(low_channels, high_channels, num_classes, inter_channels) |
|
|
|
def forward(self, input: Tensor) -> Dict[str, Tensor]: |
|
features = self.backbone(input) |
|
out = self.classifier(features) |
|
out = F.interpolate(out, size=input.shape[-2:], mode="bilinear", align_corners=False) |
|
|
|
result = OrderedDict() |
|
result["out"] = out |
|
|
|
return result |
|
|
|
|
|
class LRASPPHead(nn.Module): |
|
def __init__(self, low_channels: int, high_channels: int, num_classes: int, inter_channels: int) -> None: |
|
super().__init__() |
|
self.cbr = nn.Sequential( |
|
nn.Conv2d(high_channels, inter_channels, 1, bias=False), |
|
nn.BatchNorm2d(inter_channels), |
|
nn.ReLU(inplace=True), |
|
) |
|
self.scale = nn.Sequential( |
|
nn.AdaptiveAvgPool2d(1), |
|
nn.Conv2d(high_channels, inter_channels, 1, bias=False), |
|
nn.Sigmoid(), |
|
) |
|
self.low_classifier = nn.Conv2d(low_channels, num_classes, 1) |
|
self.high_classifier = nn.Conv2d(inter_channels, num_classes, 1) |
|
|
|
def forward(self, input: Dict[str, Tensor]) -> Tensor: |
|
low = input["low"] |
|
high = input["high"] |
|
|
|
x = self.cbr(high) |
|
s = self.scale(high) |
|
x = x * s |
|
x = F.interpolate(x, size=low.shape[-2:], mode="bilinear", align_corners=False) |
|
|
|
return self.low_classifier(low) + self.high_classifier(x) |
|
|
|
|
|
def _lraspp_mobilenetv3(backbone: MobileNetV3, num_classes: int) -> LRASPP: |
|
backbone = backbone.features |
|
|
|
|
|
stage_indices = [0] + [i for i, b in enumerate(backbone) if getattr(b, "_is_cn", False)] + [len(backbone) - 1] |
|
low_pos = stage_indices[-4] |
|
high_pos = stage_indices[-1] |
|
low_channels = backbone[low_pos].out_channels |
|
high_channels = backbone[high_pos].out_channels |
|
backbone = IntermediateLayerGetter(backbone, return_layers={str(low_pos): "low", str(high_pos): "high"}) |
|
|
|
return LRASPP(backbone, low_channels, high_channels, num_classes) |
|
|
|
|
|
class LRASPP_MobileNet_V3_Large_Weights(WeightsEnum): |
|
COCO_WITH_VOC_LABELS_V1 = Weights( |
|
url="https://download.pytorch.org/models/lraspp_mobilenet_v3_large-d234d4ea.pth", |
|
transforms=partial(SemanticSegmentation, resize_size=520), |
|
meta={ |
|
"num_params": 3221538, |
|
"categories": _VOC_CATEGORIES, |
|
"min_size": (1, 1), |
|
"recipe": "https://github.com/pytorch/vision/tree/main/references/segmentation#lraspp_mobilenet_v3_large", |
|
"_metrics": { |
|
"COCO-val2017-VOC-labels": { |
|
"miou": 57.9, |
|
"pixel_acc": 91.2, |
|
} |
|
}, |
|
"_ops": 2.086, |
|
"_file_size": 12.49, |
|
"_docs": """ |
|
These weights were trained on a subset of COCO, using only the 20 categories that are present in the |
|
Pascal VOC dataset. |
|
""", |
|
}, |
|
) |
|
DEFAULT = COCO_WITH_VOC_LABELS_V1 |
|
|
|
|
|
@register_model() |
|
@handle_legacy_interface( |
|
weights=("pretrained", LRASPP_MobileNet_V3_Large_Weights.COCO_WITH_VOC_LABELS_V1), |
|
weights_backbone=("pretrained_backbone", MobileNet_V3_Large_Weights.IMAGENET1K_V1), |
|
) |
|
def lraspp_mobilenet_v3_large( |
|
*, |
|
weights: Optional[LRASPP_MobileNet_V3_Large_Weights] = None, |
|
progress: bool = True, |
|
num_classes: Optional[int] = None, |
|
weights_backbone: Optional[MobileNet_V3_Large_Weights] = MobileNet_V3_Large_Weights.IMAGENET1K_V1, |
|
**kwargs: Any, |
|
) -> LRASPP: |
|
"""Constructs a Lite R-ASPP Network model with a MobileNetV3-Large backbone from |
|
`Searching for MobileNetV3 <https://arxiv.org/abs/1905.02244>`_ paper. |
|
|
|
.. betastatus:: segmentation module |
|
|
|
Args: |
|
weights (:class:`~torchvision.models.segmentation.LRASPP_MobileNet_V3_Large_Weights`, optional): The |
|
pretrained weights to use. See |
|
:class:`~torchvision.models.segmentation.LRASPP_MobileNet_V3_Large_Weights` below for |
|
more details, and possible values. By default, no pre-trained |
|
weights are used. |
|
progress (bool, optional): If True, displays a progress bar of the |
|
download to stderr. Default is True. |
|
num_classes (int, optional): number of output classes of the model (including the background). |
|
aux_loss (bool, optional): If True, it uses an auxiliary loss. |
|
weights_backbone (:class:`~torchvision.models.MobileNet_V3_Large_Weights`, optional): The pretrained |
|
weights for the backbone. |
|
**kwargs: parameters passed to the ``torchvision.models.segmentation.LRASPP`` |
|
base class. Please refer to the `source code |
|
<https://github.com/pytorch/vision/blob/main/torchvision/models/segmentation/lraspp.py>`_ |
|
for more details about this class. |
|
|
|
.. autoclass:: torchvision.models.segmentation.LRASPP_MobileNet_V3_Large_Weights |
|
:members: |
|
""" |
|
if kwargs.pop("aux_loss", False): |
|
raise NotImplementedError("This model does not use auxiliary loss") |
|
|
|
weights = LRASPP_MobileNet_V3_Large_Weights.verify(weights) |
|
weights_backbone = MobileNet_V3_Large_Weights.verify(weights_backbone) |
|
|
|
if weights is not None: |
|
weights_backbone = None |
|
num_classes = _ovewrite_value_param("num_classes", num_classes, len(weights.meta["categories"])) |
|
elif num_classes is None: |
|
num_classes = 21 |
|
|
|
backbone = mobilenet_v3_large(weights=weights_backbone, dilated=True) |
|
model = _lraspp_mobilenetv3(backbone, num_classes) |
|
|
|
if weights is not None: |
|
model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True)) |
|
|
|
return model |
|
|