|
from functools import partial |
|
from typing import Any, Optional, Sequence |
|
|
|
import torch |
|
from torch import nn |
|
from torch.nn import functional as F |
|
|
|
from ...transforms._presets import SemanticSegmentation |
|
from .._api import register_model, Weights, WeightsEnum |
|
from .._meta import _VOC_CATEGORIES |
|
from .._utils import _ovewrite_value_param, handle_legacy_interface, IntermediateLayerGetter |
|
from ..mobilenetv3 import mobilenet_v3_large, MobileNet_V3_Large_Weights, MobileNetV3 |
|
from ..resnet import ResNet, resnet101, ResNet101_Weights, resnet50, ResNet50_Weights |
|
from ._utils import _SimpleSegmentationModel |
|
from .fcn import FCNHead |
|
|
|
|
|
__all__ = [ |
|
"DeepLabV3", |
|
"DeepLabV3_ResNet50_Weights", |
|
"DeepLabV3_ResNet101_Weights", |
|
"DeepLabV3_MobileNet_V3_Large_Weights", |
|
"deeplabv3_mobilenet_v3_large", |
|
"deeplabv3_resnet50", |
|
"deeplabv3_resnet101", |
|
] |
|
|
|
|
|
class DeepLabV3(_SimpleSegmentationModel): |
|
""" |
|
Implements DeepLabV3 model from |
|
`"Rethinking Atrous Convolution for Semantic Image Segmentation" |
|
<https://arxiv.org/abs/1706.05587>`_. |
|
|
|
Args: |
|
backbone (nn.Module): the network used to compute the features for the model. |
|
The backbone should return an OrderedDict[Tensor], with the key being |
|
"out" for the last feature map used, and "aux" if an auxiliary classifier |
|
is used. |
|
classifier (nn.Module): module that takes the "out" element returned from |
|
the backbone and returns a dense prediction. |
|
aux_classifier (nn.Module, optional): auxiliary classifier used during training |
|
""" |
|
|
|
pass |
|
|
|
|
|
class DeepLabHead(nn.Sequential): |
|
def __init__(self, in_channels: int, num_classes: int, atrous_rates: Sequence[int] = (12, 24, 36)) -> None: |
|
super().__init__( |
|
ASPP(in_channels, atrous_rates), |
|
nn.Conv2d(256, 256, 3, padding=1, bias=False), |
|
nn.BatchNorm2d(256), |
|
nn.ReLU(), |
|
nn.Conv2d(256, num_classes, 1), |
|
) |
|
|
|
|
|
class ASPPConv(nn.Sequential): |
|
def __init__(self, in_channels: int, out_channels: int, dilation: int) -> None: |
|
modules = [ |
|
nn.Conv2d(in_channels, out_channels, 3, padding=dilation, dilation=dilation, bias=False), |
|
nn.BatchNorm2d(out_channels), |
|
nn.ReLU(), |
|
] |
|
super().__init__(*modules) |
|
|
|
|
|
class ASPPPooling(nn.Sequential): |
|
def __init__(self, in_channels: int, out_channels: int) -> None: |
|
super().__init__( |
|
nn.AdaptiveAvgPool2d(1), |
|
nn.Conv2d(in_channels, out_channels, 1, bias=False), |
|
nn.BatchNorm2d(out_channels), |
|
nn.ReLU(), |
|
) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
size = x.shape[-2:] |
|
for mod in self: |
|
x = mod(x) |
|
return F.interpolate(x, size=size, mode="bilinear", align_corners=False) |
|
|
|
|
|
class ASPP(nn.Module): |
|
def __init__(self, in_channels: int, atrous_rates: Sequence[int], out_channels: int = 256) -> None: |
|
super().__init__() |
|
modules = [] |
|
modules.append( |
|
nn.Sequential(nn.Conv2d(in_channels, out_channels, 1, bias=False), nn.BatchNorm2d(out_channels), nn.ReLU()) |
|
) |
|
|
|
rates = tuple(atrous_rates) |
|
for rate in rates: |
|
modules.append(ASPPConv(in_channels, out_channels, rate)) |
|
|
|
modules.append(ASPPPooling(in_channels, out_channels)) |
|
|
|
self.convs = nn.ModuleList(modules) |
|
|
|
self.project = nn.Sequential( |
|
nn.Conv2d(len(self.convs) * out_channels, out_channels, 1, bias=False), |
|
nn.BatchNorm2d(out_channels), |
|
nn.ReLU(), |
|
nn.Dropout(0.5), |
|
) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
_res = [] |
|
for conv in self.convs: |
|
_res.append(conv(x)) |
|
res = torch.cat(_res, dim=1) |
|
return self.project(res) |
|
|
|
|
|
def _deeplabv3_resnet( |
|
backbone: ResNet, |
|
num_classes: int, |
|
aux: Optional[bool], |
|
) -> DeepLabV3: |
|
return_layers = {"layer4": "out"} |
|
if aux: |
|
return_layers["layer3"] = "aux" |
|
backbone = IntermediateLayerGetter(backbone, return_layers=return_layers) |
|
|
|
aux_classifier = FCNHead(1024, num_classes) if aux else None |
|
classifier = DeepLabHead(2048, num_classes) |
|
return DeepLabV3(backbone, classifier, aux_classifier) |
|
|
|
|
|
_COMMON_META = { |
|
"categories": _VOC_CATEGORIES, |
|
"min_size": (1, 1), |
|
"_docs": """ |
|
These weights were trained on a subset of COCO, using only the 20 categories that are present in the Pascal VOC |
|
dataset. |
|
""", |
|
} |
|
|
|
|
|
class DeepLabV3_ResNet50_Weights(WeightsEnum): |
|
COCO_WITH_VOC_LABELS_V1 = Weights( |
|
url="https://download.pytorch.org/models/deeplabv3_resnet50_coco-cd0a2569.pth", |
|
transforms=partial(SemanticSegmentation, resize_size=520), |
|
meta={ |
|
**_COMMON_META, |
|
"num_params": 42004074, |
|
"recipe": "https://github.com/pytorch/vision/tree/main/references/segmentation#deeplabv3_resnet50", |
|
"_metrics": { |
|
"COCO-val2017-VOC-labels": { |
|
"miou": 66.4, |
|
"pixel_acc": 92.4, |
|
} |
|
}, |
|
"_ops": 178.722, |
|
"_file_size": 160.515, |
|
}, |
|
) |
|
DEFAULT = COCO_WITH_VOC_LABELS_V1 |
|
|
|
|
|
class DeepLabV3_ResNet101_Weights(WeightsEnum): |
|
COCO_WITH_VOC_LABELS_V1 = Weights( |
|
url="https://download.pytorch.org/models/deeplabv3_resnet101_coco-586e9e4e.pth", |
|
transforms=partial(SemanticSegmentation, resize_size=520), |
|
meta={ |
|
**_COMMON_META, |
|
"num_params": 60996202, |
|
"recipe": "https://github.com/pytorch/vision/tree/main/references/segmentation#fcn_resnet101", |
|
"_metrics": { |
|
"COCO-val2017-VOC-labels": { |
|
"miou": 67.4, |
|
"pixel_acc": 92.4, |
|
} |
|
}, |
|
"_ops": 258.743, |
|
"_file_size": 233.217, |
|
}, |
|
) |
|
DEFAULT = COCO_WITH_VOC_LABELS_V1 |
|
|
|
|
|
class DeepLabV3_MobileNet_V3_Large_Weights(WeightsEnum): |
|
COCO_WITH_VOC_LABELS_V1 = Weights( |
|
url="https://download.pytorch.org/models/deeplabv3_mobilenet_v3_large-fc3c493d.pth", |
|
transforms=partial(SemanticSegmentation, resize_size=520), |
|
meta={ |
|
**_COMMON_META, |
|
"num_params": 11029328, |
|
"recipe": "https://github.com/pytorch/vision/tree/main/references/segmentation#deeplabv3_mobilenet_v3_large", |
|
"_metrics": { |
|
"COCO-val2017-VOC-labels": { |
|
"miou": 60.3, |
|
"pixel_acc": 91.2, |
|
} |
|
}, |
|
"_ops": 10.452, |
|
"_file_size": 42.301, |
|
}, |
|
) |
|
DEFAULT = COCO_WITH_VOC_LABELS_V1 |
|
|
|
|
|
def _deeplabv3_mobilenetv3( |
|
backbone: MobileNetV3, |
|
num_classes: int, |
|
aux: Optional[bool], |
|
) -> DeepLabV3: |
|
backbone = backbone.features |
|
|
|
|
|
stage_indices = [0] + [i for i, b in enumerate(backbone) if getattr(b, "_is_cn", False)] + [len(backbone) - 1] |
|
out_pos = stage_indices[-1] |
|
out_inplanes = backbone[out_pos].out_channels |
|
aux_pos = stage_indices[-4] |
|
aux_inplanes = backbone[aux_pos].out_channels |
|
return_layers = {str(out_pos): "out"} |
|
if aux: |
|
return_layers[str(aux_pos)] = "aux" |
|
backbone = IntermediateLayerGetter(backbone, return_layers=return_layers) |
|
|
|
aux_classifier = FCNHead(aux_inplanes, num_classes) if aux else None |
|
classifier = DeepLabHead(out_inplanes, num_classes) |
|
return DeepLabV3(backbone, classifier, aux_classifier) |
|
|
|
|
|
@register_model() |
|
@handle_legacy_interface( |
|
weights=("pretrained", DeepLabV3_ResNet50_Weights.COCO_WITH_VOC_LABELS_V1), |
|
weights_backbone=("pretrained_backbone", ResNet50_Weights.IMAGENET1K_V1), |
|
) |
|
def deeplabv3_resnet50( |
|
*, |
|
weights: Optional[DeepLabV3_ResNet50_Weights] = None, |
|
progress: bool = True, |
|
num_classes: Optional[int] = None, |
|
aux_loss: Optional[bool] = None, |
|
weights_backbone: Optional[ResNet50_Weights] = ResNet50_Weights.IMAGENET1K_V1, |
|
**kwargs: Any, |
|
) -> DeepLabV3: |
|
"""Constructs a DeepLabV3 model with a ResNet-50 backbone. |
|
|
|
.. betastatus:: segmentation module |
|
|
|
Reference: `Rethinking Atrous Convolution for Semantic Image Segmentation <https://arxiv.org/abs/1706.05587>`__. |
|
|
|
Args: |
|
weights (:class:`~torchvision.models.segmentation.DeepLabV3_ResNet50_Weights`, optional): The |
|
pretrained weights to use. See |
|
:class:`~torchvision.models.segmentation.DeepLabV3_ResNet50_Weights` below for |
|
more details, and possible values. By default, no pre-trained |
|
weights are used. |
|
progress (bool, optional): If True, displays a progress bar of the |
|
download to stderr. Default is True. |
|
num_classes (int, optional): number of output classes of the model (including the background) |
|
aux_loss (bool, optional): If True, it uses an auxiliary loss |
|
weights_backbone (:class:`~torchvision.models.ResNet50_Weights`, optional): The pretrained weights for the |
|
backbone |
|
**kwargs: unused |
|
|
|
.. autoclass:: torchvision.models.segmentation.DeepLabV3_ResNet50_Weights |
|
:members: |
|
""" |
|
weights = DeepLabV3_ResNet50_Weights.verify(weights) |
|
weights_backbone = ResNet50_Weights.verify(weights_backbone) |
|
|
|
if weights is not None: |
|
weights_backbone = None |
|
num_classes = _ovewrite_value_param("num_classes", num_classes, len(weights.meta["categories"])) |
|
aux_loss = _ovewrite_value_param("aux_loss", aux_loss, True) |
|
elif num_classes is None: |
|
num_classes = 21 |
|
|
|
backbone = resnet50(weights=weights_backbone, replace_stride_with_dilation=[False, True, True]) |
|
model = _deeplabv3_resnet(backbone, num_classes, aux_loss) |
|
|
|
if weights is not None: |
|
model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True)) |
|
|
|
return model |
|
|
|
|
|
@register_model() |
|
@handle_legacy_interface( |
|
weights=("pretrained", DeepLabV3_ResNet101_Weights.COCO_WITH_VOC_LABELS_V1), |
|
weights_backbone=("pretrained_backbone", ResNet101_Weights.IMAGENET1K_V1), |
|
) |
|
def deeplabv3_resnet101( |
|
*, |
|
weights: Optional[DeepLabV3_ResNet101_Weights] = None, |
|
progress: bool = True, |
|
num_classes: Optional[int] = None, |
|
aux_loss: Optional[bool] = None, |
|
weights_backbone: Optional[ResNet101_Weights] = ResNet101_Weights.IMAGENET1K_V1, |
|
**kwargs: Any, |
|
) -> DeepLabV3: |
|
"""Constructs a DeepLabV3 model with a ResNet-101 backbone. |
|
|
|
.. betastatus:: segmentation module |
|
|
|
Reference: `Rethinking Atrous Convolution for Semantic Image Segmentation <https://arxiv.org/abs/1706.05587>`__. |
|
|
|
Args: |
|
weights (:class:`~torchvision.models.segmentation.DeepLabV3_ResNet101_Weights`, optional): The |
|
pretrained weights to use. See |
|
:class:`~torchvision.models.segmentation.DeepLabV3_ResNet101_Weights` below for |
|
more details, and possible values. By default, no pre-trained |
|
weights are used. |
|
progress (bool, optional): If True, displays a progress bar of the |
|
download to stderr. Default is True. |
|
num_classes (int, optional): number of output classes of the model (including the background) |
|
aux_loss (bool, optional): If True, it uses an auxiliary loss |
|
weights_backbone (:class:`~torchvision.models.ResNet101_Weights`, optional): The pretrained weights for the |
|
backbone |
|
**kwargs: unused |
|
|
|
.. autoclass:: torchvision.models.segmentation.DeepLabV3_ResNet101_Weights |
|
:members: |
|
""" |
|
weights = DeepLabV3_ResNet101_Weights.verify(weights) |
|
weights_backbone = ResNet101_Weights.verify(weights_backbone) |
|
|
|
if weights is not None: |
|
weights_backbone = None |
|
num_classes = _ovewrite_value_param("num_classes", num_classes, len(weights.meta["categories"])) |
|
aux_loss = _ovewrite_value_param("aux_loss", aux_loss, True) |
|
elif num_classes is None: |
|
num_classes = 21 |
|
|
|
backbone = resnet101(weights=weights_backbone, replace_stride_with_dilation=[False, True, True]) |
|
model = _deeplabv3_resnet(backbone, num_classes, aux_loss) |
|
|
|
if weights is not None: |
|
model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True)) |
|
|
|
return model |
|
|
|
|
|
@register_model() |
|
@handle_legacy_interface( |
|
weights=("pretrained", DeepLabV3_MobileNet_V3_Large_Weights.COCO_WITH_VOC_LABELS_V1), |
|
weights_backbone=("pretrained_backbone", MobileNet_V3_Large_Weights.IMAGENET1K_V1), |
|
) |
|
def deeplabv3_mobilenet_v3_large( |
|
*, |
|
weights: Optional[DeepLabV3_MobileNet_V3_Large_Weights] = None, |
|
progress: bool = True, |
|
num_classes: Optional[int] = None, |
|
aux_loss: Optional[bool] = None, |
|
weights_backbone: Optional[MobileNet_V3_Large_Weights] = MobileNet_V3_Large_Weights.IMAGENET1K_V1, |
|
**kwargs: Any, |
|
) -> DeepLabV3: |
|
"""Constructs a DeepLabV3 model with a MobileNetV3-Large backbone. |
|
|
|
Reference: `Rethinking Atrous Convolution for Semantic Image Segmentation <https://arxiv.org/abs/1706.05587>`__. |
|
|
|
Args: |
|
weights (:class:`~torchvision.models.segmentation.DeepLabV3_MobileNet_V3_Large_Weights`, optional): The |
|
pretrained weights to use. See |
|
:class:`~torchvision.models.segmentation.DeepLabV3_MobileNet_V3_Large_Weights` below for |
|
more details, and possible values. By default, no pre-trained |
|
weights are used. |
|
progress (bool, optional): If True, displays a progress bar of the |
|
download to stderr. Default is True. |
|
num_classes (int, optional): number of output classes of the model (including the background) |
|
aux_loss (bool, optional): If True, it uses an auxiliary loss |
|
weights_backbone (:class:`~torchvision.models.MobileNet_V3_Large_Weights`, optional): The pretrained weights |
|
for the backbone |
|
**kwargs: unused |
|
|
|
.. autoclass:: torchvision.models.segmentation.DeepLabV3_MobileNet_V3_Large_Weights |
|
:members: |
|
""" |
|
weights = DeepLabV3_MobileNet_V3_Large_Weights.verify(weights) |
|
weights_backbone = MobileNet_V3_Large_Weights.verify(weights_backbone) |
|
|
|
if weights is not None: |
|
weights_backbone = None |
|
num_classes = _ovewrite_value_param("num_classes", num_classes, len(weights.meta["categories"])) |
|
aux_loss = _ovewrite_value_param("aux_loss", aux_loss, True) |
|
elif num_classes is None: |
|
num_classes = 21 |
|
|
|
backbone = mobilenet_v3_large(weights=weights_backbone, dilated=True) |
|
model = _deeplabv3_mobilenetv3(backbone, num_classes, aux_loss) |
|
|
|
if weights is not None: |
|
model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True)) |
|
|
|
return model |
|
|