|
from functools import partial |
|
from typing import Any, List, Optional, Union |
|
|
|
import torch |
|
import torch.nn as nn |
|
from torch import Tensor |
|
from torchvision.models import shufflenetv2 |
|
|
|
from ...transforms._presets import ImageClassification |
|
from .._api import register_model, Weights, WeightsEnum |
|
from .._meta import _IMAGENET_CATEGORIES |
|
from .._utils import _ovewrite_named_param, handle_legacy_interface |
|
from ..shufflenetv2 import ( |
|
ShuffleNet_V2_X0_5_Weights, |
|
ShuffleNet_V2_X1_0_Weights, |
|
ShuffleNet_V2_X1_5_Weights, |
|
ShuffleNet_V2_X2_0_Weights, |
|
) |
|
from .utils import _fuse_modules, _replace_relu, quantize_model |
|
|
|
|
|
__all__ = [ |
|
"QuantizableShuffleNetV2", |
|
"ShuffleNet_V2_X0_5_QuantizedWeights", |
|
"ShuffleNet_V2_X1_0_QuantizedWeights", |
|
"ShuffleNet_V2_X1_5_QuantizedWeights", |
|
"ShuffleNet_V2_X2_0_QuantizedWeights", |
|
"shufflenet_v2_x0_5", |
|
"shufflenet_v2_x1_0", |
|
"shufflenet_v2_x1_5", |
|
"shufflenet_v2_x2_0", |
|
] |
|
|
|
|
|
class QuantizableInvertedResidual(shufflenetv2.InvertedResidual): |
|
def __init__(self, *args: Any, **kwargs: Any) -> None: |
|
super().__init__(*args, **kwargs) |
|
self.cat = nn.quantized.FloatFunctional() |
|
|
|
def forward(self, x: Tensor) -> Tensor: |
|
if self.stride == 1: |
|
x1, x2 = x.chunk(2, dim=1) |
|
out = self.cat.cat([x1, self.branch2(x2)], dim=1) |
|
else: |
|
out = self.cat.cat([self.branch1(x), self.branch2(x)], dim=1) |
|
|
|
out = shufflenetv2.channel_shuffle(out, 2) |
|
|
|
return out |
|
|
|
|
|
class QuantizableShuffleNetV2(shufflenetv2.ShuffleNetV2): |
|
|
|
def __init__(self, *args: Any, **kwargs: Any) -> None: |
|
super().__init__(*args, inverted_residual=QuantizableInvertedResidual, **kwargs) |
|
self.quant = torch.ao.quantization.QuantStub() |
|
self.dequant = torch.ao.quantization.DeQuantStub() |
|
|
|
def forward(self, x: Tensor) -> Tensor: |
|
x = self.quant(x) |
|
x = self._forward_impl(x) |
|
x = self.dequant(x) |
|
return x |
|
|
|
def fuse_model(self, is_qat: Optional[bool] = None) -> None: |
|
r"""Fuse conv/bn/relu modules in shufflenetv2 model |
|
|
|
Fuse conv+bn+relu/ conv+relu/conv+bn modules to prepare for quantization. |
|
Model is modified in place. |
|
|
|
.. note:: |
|
Note that this operation does not change numerics |
|
and the model after modification is in floating point |
|
""" |
|
for name, m in self._modules.items(): |
|
if name in ["conv1", "conv5"] and m is not None: |
|
_fuse_modules(m, [["0", "1", "2"]], is_qat, inplace=True) |
|
for m in self.modules(): |
|
if type(m) is QuantizableInvertedResidual: |
|
if len(m.branch1._modules.items()) > 0: |
|
_fuse_modules(m.branch1, [["0", "1"], ["2", "3", "4"]], is_qat, inplace=True) |
|
_fuse_modules( |
|
m.branch2, |
|
[["0", "1", "2"], ["3", "4"], ["5", "6", "7"]], |
|
is_qat, |
|
inplace=True, |
|
) |
|
|
|
|
|
def _shufflenetv2( |
|
stages_repeats: List[int], |
|
stages_out_channels: List[int], |
|
*, |
|
weights: Optional[WeightsEnum], |
|
progress: bool, |
|
quantize: bool, |
|
**kwargs: Any, |
|
) -> QuantizableShuffleNetV2: |
|
if weights is not None: |
|
_ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"])) |
|
if "backend" in weights.meta: |
|
_ovewrite_named_param(kwargs, "backend", weights.meta["backend"]) |
|
backend = kwargs.pop("backend", "fbgemm") |
|
|
|
model = QuantizableShuffleNetV2(stages_repeats, stages_out_channels, **kwargs) |
|
_replace_relu(model) |
|
if quantize: |
|
quantize_model(model, backend) |
|
|
|
if weights is not None: |
|
model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True)) |
|
|
|
return model |
|
|
|
|
|
_COMMON_META = { |
|
"min_size": (1, 1), |
|
"categories": _IMAGENET_CATEGORIES, |
|
"backend": "fbgemm", |
|
"recipe": "https://github.com/pytorch/vision/tree/main/references/classification#post-training-quantized-models", |
|
"_docs": """ |
|
These weights were produced by doing Post Training Quantization (eager mode) on top of the unquantized |
|
weights listed below. |
|
""", |
|
} |
|
|
|
|
|
class ShuffleNet_V2_X0_5_QuantizedWeights(WeightsEnum): |
|
IMAGENET1K_FBGEMM_V1 = Weights( |
|
url="https://download.pytorch.org/models/quantized/shufflenetv2_x0.5_fbgemm-00845098.pth", |
|
transforms=partial(ImageClassification, crop_size=224), |
|
meta={ |
|
**_COMMON_META, |
|
"num_params": 1366792, |
|
"unquantized": ShuffleNet_V2_X0_5_Weights.IMAGENET1K_V1, |
|
"_metrics": { |
|
"ImageNet-1K": { |
|
"acc@1": 57.972, |
|
"acc@5": 79.780, |
|
} |
|
}, |
|
"_ops": 0.04, |
|
"_file_size": 1.501, |
|
}, |
|
) |
|
DEFAULT = IMAGENET1K_FBGEMM_V1 |
|
|
|
|
|
class ShuffleNet_V2_X1_0_QuantizedWeights(WeightsEnum): |
|
IMAGENET1K_FBGEMM_V1 = Weights( |
|
url="https://download.pytorch.org/models/quantized/shufflenetv2_x1_fbgemm-1e62bb32.pth", |
|
transforms=partial(ImageClassification, crop_size=224), |
|
meta={ |
|
**_COMMON_META, |
|
"num_params": 2278604, |
|
"unquantized": ShuffleNet_V2_X1_0_Weights.IMAGENET1K_V1, |
|
"_metrics": { |
|
"ImageNet-1K": { |
|
"acc@1": 68.360, |
|
"acc@5": 87.582, |
|
} |
|
}, |
|
"_ops": 0.145, |
|
"_file_size": 2.334, |
|
}, |
|
) |
|
DEFAULT = IMAGENET1K_FBGEMM_V1 |
|
|
|
|
|
class ShuffleNet_V2_X1_5_QuantizedWeights(WeightsEnum): |
|
IMAGENET1K_FBGEMM_V1 = Weights( |
|
url="https://download.pytorch.org/models/quantized/shufflenetv2_x1_5_fbgemm-d7401f05.pth", |
|
transforms=partial(ImageClassification, crop_size=224, resize_size=232), |
|
meta={ |
|
**_COMMON_META, |
|
"recipe": "https://github.com/pytorch/vision/pull/5906", |
|
"num_params": 3503624, |
|
"unquantized": ShuffleNet_V2_X1_5_Weights.IMAGENET1K_V1, |
|
"_metrics": { |
|
"ImageNet-1K": { |
|
"acc@1": 72.052, |
|
"acc@5": 90.700, |
|
} |
|
}, |
|
"_ops": 0.296, |
|
"_file_size": 3.672, |
|
}, |
|
) |
|
DEFAULT = IMAGENET1K_FBGEMM_V1 |
|
|
|
|
|
class ShuffleNet_V2_X2_0_QuantizedWeights(WeightsEnum): |
|
IMAGENET1K_FBGEMM_V1 = Weights( |
|
url="https://download.pytorch.org/models/quantized/shufflenetv2_x2_0_fbgemm-5cac526c.pth", |
|
transforms=partial(ImageClassification, crop_size=224, resize_size=232), |
|
meta={ |
|
**_COMMON_META, |
|
"recipe": "https://github.com/pytorch/vision/pull/5906", |
|
"num_params": 7393996, |
|
"unquantized": ShuffleNet_V2_X2_0_Weights.IMAGENET1K_V1, |
|
"_metrics": { |
|
"ImageNet-1K": { |
|
"acc@1": 75.354, |
|
"acc@5": 92.488, |
|
} |
|
}, |
|
"_ops": 0.583, |
|
"_file_size": 7.467, |
|
}, |
|
) |
|
DEFAULT = IMAGENET1K_FBGEMM_V1 |
|
|
|
|
|
@register_model(name="quantized_shufflenet_v2_x0_5") |
|
@handle_legacy_interface( |
|
weights=( |
|
"pretrained", |
|
lambda kwargs: ShuffleNet_V2_X0_5_QuantizedWeights.IMAGENET1K_FBGEMM_V1 |
|
if kwargs.get("quantize", False) |
|
else ShuffleNet_V2_X0_5_Weights.IMAGENET1K_V1, |
|
) |
|
) |
|
def shufflenet_v2_x0_5( |
|
*, |
|
weights: Optional[Union[ShuffleNet_V2_X0_5_QuantizedWeights, ShuffleNet_V2_X0_5_Weights]] = None, |
|
progress: bool = True, |
|
quantize: bool = False, |
|
**kwargs: Any, |
|
) -> QuantizableShuffleNetV2: |
|
""" |
|
Constructs a ShuffleNetV2 with 0.5x output channels, as described in |
|
`ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design |
|
<https://arxiv.org/abs/1807.11164>`__. |
|
|
|
.. note:: |
|
Note that ``quantize = True`` returns a quantized model with 8 bit |
|
weights. Quantized models only support inference and run on CPUs. |
|
GPU inference is not yet supported. |
|
|
|
Args: |
|
weights (:class:`~torchvision.models.quantization.ShuffleNet_V2_X0_5_QuantizedWeights` or :class:`~torchvision.models.ShuffleNet_V2_X0_5_Weights`, optional): The |
|
pretrained weights for the model. See |
|
:class:`~torchvision.models.quantization.ShuffleNet_V2_X0_5_QuantizedWeights` below for |
|
more details, and possible values. By default, no pre-trained |
|
weights are used. |
|
progress (bool, optional): If True, displays a progress bar of the download to stderr. |
|
Default is True. |
|
quantize (bool, optional): If True, return a quantized version of the model. |
|
Default is False. |
|
**kwargs: parameters passed to the ``torchvision.models.quantization.ShuffleNet_V2_X0_5_QuantizedWeights`` |
|
base class. Please refer to the `source code |
|
<https://github.com/pytorch/vision/blob/main/torchvision/models/quantization/shufflenetv2.py>`_ |
|
for more details about this class. |
|
|
|
.. autoclass:: torchvision.models.quantization.ShuffleNet_V2_X0_5_QuantizedWeights |
|
:members: |
|
|
|
.. autoclass:: torchvision.models.ShuffleNet_V2_X0_5_Weights |
|
:members: |
|
:noindex: |
|
""" |
|
weights = (ShuffleNet_V2_X0_5_QuantizedWeights if quantize else ShuffleNet_V2_X0_5_Weights).verify(weights) |
|
return _shufflenetv2( |
|
[4, 8, 4], [24, 48, 96, 192, 1024], weights=weights, progress=progress, quantize=quantize, **kwargs |
|
) |
|
|
|
|
|
@register_model(name="quantized_shufflenet_v2_x1_0") |
|
@handle_legacy_interface( |
|
weights=( |
|
"pretrained", |
|
lambda kwargs: ShuffleNet_V2_X1_0_QuantizedWeights.IMAGENET1K_FBGEMM_V1 |
|
if kwargs.get("quantize", False) |
|
else ShuffleNet_V2_X1_0_Weights.IMAGENET1K_V1, |
|
) |
|
) |
|
def shufflenet_v2_x1_0( |
|
*, |
|
weights: Optional[Union[ShuffleNet_V2_X1_0_QuantizedWeights, ShuffleNet_V2_X1_0_Weights]] = None, |
|
progress: bool = True, |
|
quantize: bool = False, |
|
**kwargs: Any, |
|
) -> QuantizableShuffleNetV2: |
|
""" |
|
Constructs a ShuffleNetV2 with 1.0x output channels, as described in |
|
`ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design |
|
<https://arxiv.org/abs/1807.11164>`__. |
|
|
|
.. note:: |
|
Note that ``quantize = True`` returns a quantized model with 8 bit |
|
weights. Quantized models only support inference and run on CPUs. |
|
GPU inference is not yet supported. |
|
|
|
Args: |
|
weights (:class:`~torchvision.models.quantization.ShuffleNet_V2_X1_0_QuantizedWeights` or :class:`~torchvision.models.ShuffleNet_V2_X1_0_Weights`, optional): The |
|
pretrained weights for the model. See |
|
:class:`~torchvision.models.quantization.ShuffleNet_V2_X1_0_QuantizedWeights` below for |
|
more details, and possible values. By default, no pre-trained |
|
weights are used. |
|
progress (bool, optional): If True, displays a progress bar of the download to stderr. |
|
Default is True. |
|
quantize (bool, optional): If True, return a quantized version of the model. |
|
Default is False. |
|
**kwargs: parameters passed to the ``torchvision.models.quantization.ShuffleNet_V2_X1_0_QuantizedWeights`` |
|
base class. Please refer to the `source code |
|
<https://github.com/pytorch/vision/blob/main/torchvision/models/quantization/shufflenetv2.py>`_ |
|
for more details about this class. |
|
|
|
.. autoclass:: torchvision.models.quantization.ShuffleNet_V2_X1_0_QuantizedWeights |
|
:members: |
|
|
|
.. autoclass:: torchvision.models.ShuffleNet_V2_X1_0_Weights |
|
:members: |
|
:noindex: |
|
""" |
|
weights = (ShuffleNet_V2_X1_0_QuantizedWeights if quantize else ShuffleNet_V2_X1_0_Weights).verify(weights) |
|
return _shufflenetv2( |
|
[4, 8, 4], [24, 116, 232, 464, 1024], weights=weights, progress=progress, quantize=quantize, **kwargs |
|
) |
|
|
|
|
|
@register_model(name="quantized_shufflenet_v2_x1_5") |
|
@handle_legacy_interface( |
|
weights=( |
|
"pretrained", |
|
lambda kwargs: ShuffleNet_V2_X1_5_QuantizedWeights.IMAGENET1K_FBGEMM_V1 |
|
if kwargs.get("quantize", False) |
|
else ShuffleNet_V2_X1_5_Weights.IMAGENET1K_V1, |
|
) |
|
) |
|
def shufflenet_v2_x1_5( |
|
*, |
|
weights: Optional[Union[ShuffleNet_V2_X1_5_QuantizedWeights, ShuffleNet_V2_X1_5_Weights]] = None, |
|
progress: bool = True, |
|
quantize: bool = False, |
|
**kwargs: Any, |
|
) -> QuantizableShuffleNetV2: |
|
""" |
|
Constructs a ShuffleNetV2 with 1.5x output channels, as described in |
|
`ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design |
|
<https://arxiv.org/abs/1807.11164>`__. |
|
|
|
.. note:: |
|
Note that ``quantize = True`` returns a quantized model with 8 bit |
|
weights. Quantized models only support inference and run on CPUs. |
|
GPU inference is not yet supported. |
|
|
|
Args: |
|
weights (:class:`~torchvision.models.quantization.ShuffleNet_V2_X1_5_QuantizedWeights` or :class:`~torchvision.models.ShuffleNet_V2_X1_5_Weights`, optional): The |
|
pretrained weights for the model. See |
|
:class:`~torchvision.models.quantization.ShuffleNet_V2_X1_5_QuantizedWeights` below for |
|
more details, and possible values. By default, no pre-trained |
|
weights are used. |
|
progress (bool, optional): If True, displays a progress bar of the download to stderr. |
|
Default is True. |
|
quantize (bool, optional): If True, return a quantized version of the model. |
|
Default is False. |
|
**kwargs: parameters passed to the ``torchvision.models.quantization.ShuffleNet_V2_X1_5_QuantizedWeights`` |
|
base class. Please refer to the `source code |
|
<https://github.com/pytorch/vision/blob/main/torchvision/models/quantization/shufflenetv2.py>`_ |
|
for more details about this class. |
|
|
|
.. autoclass:: torchvision.models.quantization.ShuffleNet_V2_X1_5_QuantizedWeights |
|
:members: |
|
|
|
.. autoclass:: torchvision.models.ShuffleNet_V2_X1_5_Weights |
|
:members: |
|
:noindex: |
|
""" |
|
weights = (ShuffleNet_V2_X1_5_QuantizedWeights if quantize else ShuffleNet_V2_X1_5_Weights).verify(weights) |
|
return _shufflenetv2( |
|
[4, 8, 4], [24, 176, 352, 704, 1024], weights=weights, progress=progress, quantize=quantize, **kwargs |
|
) |
|
|
|
|
|
@register_model(name="quantized_shufflenet_v2_x2_0") |
|
@handle_legacy_interface( |
|
weights=( |
|
"pretrained", |
|
lambda kwargs: ShuffleNet_V2_X2_0_QuantizedWeights.IMAGENET1K_FBGEMM_V1 |
|
if kwargs.get("quantize", False) |
|
else ShuffleNet_V2_X2_0_Weights.IMAGENET1K_V1, |
|
) |
|
) |
|
def shufflenet_v2_x2_0( |
|
*, |
|
weights: Optional[Union[ShuffleNet_V2_X2_0_QuantizedWeights, ShuffleNet_V2_X2_0_Weights]] = None, |
|
progress: bool = True, |
|
quantize: bool = False, |
|
**kwargs: Any, |
|
) -> QuantizableShuffleNetV2: |
|
""" |
|
Constructs a ShuffleNetV2 with 2.0x output channels, as described in |
|
`ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design |
|
<https://arxiv.org/abs/1807.11164>`__. |
|
|
|
.. note:: |
|
Note that ``quantize = True`` returns a quantized model with 8 bit |
|
weights. Quantized models only support inference and run on CPUs. |
|
GPU inference is not yet supported. |
|
|
|
Args: |
|
weights (:class:`~torchvision.models.quantization.ShuffleNet_V2_X2_0_QuantizedWeights` or :class:`~torchvision.models.ShuffleNet_V2_X2_0_Weights`, optional): The |
|
pretrained weights for the model. See |
|
:class:`~torchvision.models.quantization.ShuffleNet_V2_X2_0_QuantizedWeights` below for |
|
more details, and possible values. By default, no pre-trained |
|
weights are used. |
|
progress (bool, optional): If True, displays a progress bar of the download to stderr. |
|
Default is True. |
|
quantize (bool, optional): If True, return a quantized version of the model. |
|
Default is False. |
|
**kwargs: parameters passed to the ``torchvision.models.quantization.ShuffleNet_V2_X2_0_QuantizedWeights`` |
|
base class. Please refer to the `source code |
|
<https://github.com/pytorch/vision/blob/main/torchvision/models/quantization/shufflenetv2.py>`_ |
|
for more details about this class. |
|
|
|
.. autoclass:: torchvision.models.quantization.ShuffleNet_V2_X2_0_QuantizedWeights |
|
:members: |
|
|
|
.. autoclass:: torchvision.models.ShuffleNet_V2_X2_0_Weights |
|
:members: |
|
:noindex: |
|
""" |
|
weights = (ShuffleNet_V2_X2_0_QuantizedWeights if quantize else ShuffleNet_V2_X2_0_Weights).verify(weights) |
|
return _shufflenetv2( |
|
[4, 8, 4], [24, 244, 488, 976, 2048], weights=weights, progress=progress, quantize=quantize, **kwargs |
|
) |
|
|