|
from functools import partial |
|
from typing import Any, List, Optional, Type, Union |
|
|
|
import torch |
|
import torch.nn as nn |
|
from torch import Tensor |
|
from torchvision.models.resnet import ( |
|
BasicBlock, |
|
Bottleneck, |
|
ResNet, |
|
ResNet18_Weights, |
|
ResNet50_Weights, |
|
ResNeXt101_32X8D_Weights, |
|
ResNeXt101_64X4D_Weights, |
|
) |
|
|
|
from ...transforms._presets import ImageClassification |
|
from .._api import register_model, Weights, WeightsEnum |
|
from .._meta import _IMAGENET_CATEGORIES |
|
from .._utils import _ovewrite_named_param, handle_legacy_interface |
|
from .utils import _fuse_modules, _replace_relu, quantize_model |
|
|
|
|
|
__all__ = [ |
|
"QuantizableResNet", |
|
"ResNet18_QuantizedWeights", |
|
"ResNet50_QuantizedWeights", |
|
"ResNeXt101_32X8D_QuantizedWeights", |
|
"ResNeXt101_64X4D_QuantizedWeights", |
|
"resnet18", |
|
"resnet50", |
|
"resnext101_32x8d", |
|
"resnext101_64x4d", |
|
] |
|
|
|
|
|
class QuantizableBasicBlock(BasicBlock): |
|
def __init__(self, *args: Any, **kwargs: Any) -> None: |
|
super().__init__(*args, **kwargs) |
|
self.add_relu = torch.nn.quantized.FloatFunctional() |
|
|
|
def forward(self, x: Tensor) -> Tensor: |
|
identity = x |
|
|
|
out = self.conv1(x) |
|
out = self.bn1(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv2(out) |
|
out = self.bn2(out) |
|
|
|
if self.downsample is not None: |
|
identity = self.downsample(x) |
|
|
|
out = self.add_relu.add_relu(out, identity) |
|
|
|
return out |
|
|
|
def fuse_model(self, is_qat: Optional[bool] = None) -> None: |
|
_fuse_modules(self, [["conv1", "bn1", "relu"], ["conv2", "bn2"]], is_qat, inplace=True) |
|
if self.downsample: |
|
_fuse_modules(self.downsample, ["0", "1"], is_qat, inplace=True) |
|
|
|
|
|
class QuantizableBottleneck(Bottleneck): |
|
def __init__(self, *args: Any, **kwargs: Any) -> None: |
|
super().__init__(*args, **kwargs) |
|
self.skip_add_relu = nn.quantized.FloatFunctional() |
|
self.relu1 = nn.ReLU(inplace=False) |
|
self.relu2 = nn.ReLU(inplace=False) |
|
|
|
def forward(self, x: Tensor) -> Tensor: |
|
identity = x |
|
out = self.conv1(x) |
|
out = self.bn1(out) |
|
out = self.relu1(out) |
|
out = self.conv2(out) |
|
out = self.bn2(out) |
|
out = self.relu2(out) |
|
|
|
out = self.conv3(out) |
|
out = self.bn3(out) |
|
|
|
if self.downsample is not None: |
|
identity = self.downsample(x) |
|
out = self.skip_add_relu.add_relu(out, identity) |
|
|
|
return out |
|
|
|
def fuse_model(self, is_qat: Optional[bool] = None) -> None: |
|
_fuse_modules( |
|
self, [["conv1", "bn1", "relu1"], ["conv2", "bn2", "relu2"], ["conv3", "bn3"]], is_qat, inplace=True |
|
) |
|
if self.downsample: |
|
_fuse_modules(self.downsample, ["0", "1"], is_qat, inplace=True) |
|
|
|
|
|
class QuantizableResNet(ResNet): |
|
def __init__(self, *args: Any, **kwargs: Any) -> None: |
|
super().__init__(*args, **kwargs) |
|
|
|
self.quant = torch.ao.quantization.QuantStub() |
|
self.dequant = torch.ao.quantization.DeQuantStub() |
|
|
|
def forward(self, x: Tensor) -> Tensor: |
|
x = self.quant(x) |
|
|
|
|
|
|
|
x = self._forward_impl(x) |
|
x = self.dequant(x) |
|
return x |
|
|
|
def fuse_model(self, is_qat: Optional[bool] = None) -> None: |
|
r"""Fuse conv/bn/relu modules in resnet models |
|
|
|
Fuse conv+bn+relu/ Conv+relu/conv+Bn modules to prepare for quantization. |
|
Model is modified in place. Note that this operation does not change numerics |
|
and the model after modification is in floating point |
|
""" |
|
_fuse_modules(self, ["conv1", "bn1", "relu"], is_qat, inplace=True) |
|
for m in self.modules(): |
|
if type(m) is QuantizableBottleneck or type(m) is QuantizableBasicBlock: |
|
m.fuse_model(is_qat) |
|
|
|
|
|
def _resnet( |
|
block: Type[Union[QuantizableBasicBlock, QuantizableBottleneck]], |
|
layers: List[int], |
|
weights: Optional[WeightsEnum], |
|
progress: bool, |
|
quantize: bool, |
|
**kwargs: Any, |
|
) -> QuantizableResNet: |
|
if weights is not None: |
|
_ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"])) |
|
if "backend" in weights.meta: |
|
_ovewrite_named_param(kwargs, "backend", weights.meta["backend"]) |
|
backend = kwargs.pop("backend", "fbgemm") |
|
|
|
model = QuantizableResNet(block, layers, **kwargs) |
|
_replace_relu(model) |
|
if quantize: |
|
quantize_model(model, backend) |
|
|
|
if weights is not None: |
|
model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True)) |
|
|
|
return model |
|
|
|
|
|
_COMMON_META = { |
|
"min_size": (1, 1), |
|
"categories": _IMAGENET_CATEGORIES, |
|
"backend": "fbgemm", |
|
"recipe": "https://github.com/pytorch/vision/tree/main/references/classification#post-training-quantized-models", |
|
"_docs": """ |
|
These weights were produced by doing Post Training Quantization (eager mode) on top of the unquantized |
|
weights listed below. |
|
""", |
|
} |
|
|
|
|
|
class ResNet18_QuantizedWeights(WeightsEnum): |
|
IMAGENET1K_FBGEMM_V1 = Weights( |
|
url="https://download.pytorch.org/models/quantized/resnet18_fbgemm_16fa66dd.pth", |
|
transforms=partial(ImageClassification, crop_size=224), |
|
meta={ |
|
**_COMMON_META, |
|
"num_params": 11689512, |
|
"unquantized": ResNet18_Weights.IMAGENET1K_V1, |
|
"_metrics": { |
|
"ImageNet-1K": { |
|
"acc@1": 69.494, |
|
"acc@5": 88.882, |
|
} |
|
}, |
|
"_ops": 1.814, |
|
"_file_size": 11.238, |
|
}, |
|
) |
|
DEFAULT = IMAGENET1K_FBGEMM_V1 |
|
|
|
|
|
class ResNet50_QuantizedWeights(WeightsEnum): |
|
IMAGENET1K_FBGEMM_V1 = Weights( |
|
url="https://download.pytorch.org/models/quantized/resnet50_fbgemm_bf931d71.pth", |
|
transforms=partial(ImageClassification, crop_size=224), |
|
meta={ |
|
**_COMMON_META, |
|
"num_params": 25557032, |
|
"unquantized": ResNet50_Weights.IMAGENET1K_V1, |
|
"_metrics": { |
|
"ImageNet-1K": { |
|
"acc@1": 75.920, |
|
"acc@5": 92.814, |
|
} |
|
}, |
|
"_ops": 4.089, |
|
"_file_size": 24.759, |
|
}, |
|
) |
|
IMAGENET1K_FBGEMM_V2 = Weights( |
|
url="https://download.pytorch.org/models/quantized/resnet50_fbgemm-23753f79.pth", |
|
transforms=partial(ImageClassification, crop_size=224, resize_size=232), |
|
meta={ |
|
**_COMMON_META, |
|
"num_params": 25557032, |
|
"unquantized": ResNet50_Weights.IMAGENET1K_V2, |
|
"_metrics": { |
|
"ImageNet-1K": { |
|
"acc@1": 80.282, |
|
"acc@5": 94.976, |
|
} |
|
}, |
|
"_ops": 4.089, |
|
"_file_size": 24.953, |
|
}, |
|
) |
|
DEFAULT = IMAGENET1K_FBGEMM_V2 |
|
|
|
|
|
class ResNeXt101_32X8D_QuantizedWeights(WeightsEnum): |
|
IMAGENET1K_FBGEMM_V1 = Weights( |
|
url="https://download.pytorch.org/models/quantized/resnext101_32x8_fbgemm_09835ccf.pth", |
|
transforms=partial(ImageClassification, crop_size=224), |
|
meta={ |
|
**_COMMON_META, |
|
"num_params": 88791336, |
|
"unquantized": ResNeXt101_32X8D_Weights.IMAGENET1K_V1, |
|
"_metrics": { |
|
"ImageNet-1K": { |
|
"acc@1": 78.986, |
|
"acc@5": 94.480, |
|
} |
|
}, |
|
"_ops": 16.414, |
|
"_file_size": 86.034, |
|
}, |
|
) |
|
IMAGENET1K_FBGEMM_V2 = Weights( |
|
url="https://download.pytorch.org/models/quantized/resnext101_32x8_fbgemm-ee16d00c.pth", |
|
transforms=partial(ImageClassification, crop_size=224, resize_size=232), |
|
meta={ |
|
**_COMMON_META, |
|
"num_params": 88791336, |
|
"unquantized": ResNeXt101_32X8D_Weights.IMAGENET1K_V2, |
|
"_metrics": { |
|
"ImageNet-1K": { |
|
"acc@1": 82.574, |
|
"acc@5": 96.132, |
|
} |
|
}, |
|
"_ops": 16.414, |
|
"_file_size": 86.645, |
|
}, |
|
) |
|
DEFAULT = IMAGENET1K_FBGEMM_V2 |
|
|
|
|
|
class ResNeXt101_64X4D_QuantizedWeights(WeightsEnum): |
|
IMAGENET1K_FBGEMM_V1 = Weights( |
|
url="https://download.pytorch.org/models/quantized/resnext101_64x4d_fbgemm-605a1cb3.pth", |
|
transforms=partial(ImageClassification, crop_size=224, resize_size=232), |
|
meta={ |
|
**_COMMON_META, |
|
"num_params": 83455272, |
|
"recipe": "https://github.com/pytorch/vision/pull/5935", |
|
"unquantized": ResNeXt101_64X4D_Weights.IMAGENET1K_V1, |
|
"_metrics": { |
|
"ImageNet-1K": { |
|
"acc@1": 82.898, |
|
"acc@5": 96.326, |
|
} |
|
}, |
|
"_ops": 15.46, |
|
"_file_size": 81.556, |
|
}, |
|
) |
|
DEFAULT = IMAGENET1K_FBGEMM_V1 |
|
|
|
|
|
@register_model(name="quantized_resnet18") |
|
@handle_legacy_interface( |
|
weights=( |
|
"pretrained", |
|
lambda kwargs: ResNet18_QuantizedWeights.IMAGENET1K_FBGEMM_V1 |
|
if kwargs.get("quantize", False) |
|
else ResNet18_Weights.IMAGENET1K_V1, |
|
) |
|
) |
|
def resnet18( |
|
*, |
|
weights: Optional[Union[ResNet18_QuantizedWeights, ResNet18_Weights]] = None, |
|
progress: bool = True, |
|
quantize: bool = False, |
|
**kwargs: Any, |
|
) -> QuantizableResNet: |
|
"""ResNet-18 model from |
|
`Deep Residual Learning for Image Recognition <https://arxiv.org/abs/1512.03385>`_ |
|
|
|
.. note:: |
|
Note that ``quantize = True`` returns a quantized model with 8 bit |
|
weights. Quantized models only support inference and run on CPUs. |
|
GPU inference is not yet supported. |
|
|
|
Args: |
|
weights (:class:`~torchvision.models.quantization.ResNet18_QuantizedWeights` or :class:`~torchvision.models.ResNet18_Weights`, optional): The |
|
pretrained weights for the model. See |
|
:class:`~torchvision.models.quantization.ResNet18_QuantizedWeights` below for |
|
more details, and possible values. By default, no pre-trained |
|
weights are used. |
|
progress (bool, optional): If True, displays a progress bar of the |
|
download to stderr. Default is True. |
|
quantize (bool, optional): If True, return a quantized version of the model. Default is False. |
|
**kwargs: parameters passed to the ``torchvision.models.quantization.QuantizableResNet`` |
|
base class. Please refer to the `source code |
|
<https://github.com/pytorch/vision/blob/main/torchvision/models/quantization/resnet.py>`_ |
|
for more details about this class. |
|
|
|
.. autoclass:: torchvision.models.quantization.ResNet18_QuantizedWeights |
|
:members: |
|
|
|
.. autoclass:: torchvision.models.ResNet18_Weights |
|
:members: |
|
:noindex: |
|
""" |
|
weights = (ResNet18_QuantizedWeights if quantize else ResNet18_Weights).verify(weights) |
|
|
|
return _resnet(QuantizableBasicBlock, [2, 2, 2, 2], weights, progress, quantize, **kwargs) |
|
|
|
|
|
@register_model(name="quantized_resnet50") |
|
@handle_legacy_interface( |
|
weights=( |
|
"pretrained", |
|
lambda kwargs: ResNet50_QuantizedWeights.IMAGENET1K_FBGEMM_V1 |
|
if kwargs.get("quantize", False) |
|
else ResNet50_Weights.IMAGENET1K_V1, |
|
) |
|
) |
|
def resnet50( |
|
*, |
|
weights: Optional[Union[ResNet50_QuantizedWeights, ResNet50_Weights]] = None, |
|
progress: bool = True, |
|
quantize: bool = False, |
|
**kwargs: Any, |
|
) -> QuantizableResNet: |
|
"""ResNet-50 model from |
|
`Deep Residual Learning for Image Recognition <https://arxiv.org/abs/1512.03385>`_ |
|
|
|
.. note:: |
|
Note that ``quantize = True`` returns a quantized model with 8 bit |
|
weights. Quantized models only support inference and run on CPUs. |
|
GPU inference is not yet supported. |
|
|
|
Args: |
|
weights (:class:`~torchvision.models.quantization.ResNet50_QuantizedWeights` or :class:`~torchvision.models.ResNet50_Weights`, optional): The |
|
pretrained weights for the model. See |
|
:class:`~torchvision.models.quantization.ResNet50_QuantizedWeights` below for |
|
more details, and possible values. By default, no pre-trained |
|
weights are used. |
|
progress (bool, optional): If True, displays a progress bar of the |
|
download to stderr. Default is True. |
|
quantize (bool, optional): If True, return a quantized version of the model. Default is False. |
|
**kwargs: parameters passed to the ``torchvision.models.quantization.QuantizableResNet`` |
|
base class. Please refer to the `source code |
|
<https://github.com/pytorch/vision/blob/main/torchvision/models/quantization/resnet.py>`_ |
|
for more details about this class. |
|
|
|
.. autoclass:: torchvision.models.quantization.ResNet50_QuantizedWeights |
|
:members: |
|
|
|
.. autoclass:: torchvision.models.ResNet50_Weights |
|
:members: |
|
:noindex: |
|
""" |
|
weights = (ResNet50_QuantizedWeights if quantize else ResNet50_Weights).verify(weights) |
|
|
|
return _resnet(QuantizableBottleneck, [3, 4, 6, 3], weights, progress, quantize, **kwargs) |
|
|
|
|
|
@register_model(name="quantized_resnext101_32x8d") |
|
@handle_legacy_interface( |
|
weights=( |
|
"pretrained", |
|
lambda kwargs: ResNeXt101_32X8D_QuantizedWeights.IMAGENET1K_FBGEMM_V1 |
|
if kwargs.get("quantize", False) |
|
else ResNeXt101_32X8D_Weights.IMAGENET1K_V1, |
|
) |
|
) |
|
def resnext101_32x8d( |
|
*, |
|
weights: Optional[Union[ResNeXt101_32X8D_QuantizedWeights, ResNeXt101_32X8D_Weights]] = None, |
|
progress: bool = True, |
|
quantize: bool = False, |
|
**kwargs: Any, |
|
) -> QuantizableResNet: |
|
"""ResNeXt-101 32x8d model from |
|
`Aggregated Residual Transformation for Deep Neural Networks <https://arxiv.org/abs/1611.05431>`_ |
|
|
|
.. note:: |
|
Note that ``quantize = True`` returns a quantized model with 8 bit |
|
weights. Quantized models only support inference and run on CPUs. |
|
GPU inference is not yet supported. |
|
|
|
Args: |
|
weights (:class:`~torchvision.models.quantization.ResNeXt101_32X8D_QuantizedWeights` or :class:`~torchvision.models.ResNeXt101_32X8D_Weights`, optional): The |
|
pretrained weights for the model. See |
|
:class:`~torchvision.models.quantization.ResNet101_32X8D_QuantizedWeights` below for |
|
more details, and possible values. By default, no pre-trained |
|
weights are used. |
|
progress (bool, optional): If True, displays a progress bar of the |
|
download to stderr. Default is True. |
|
quantize (bool, optional): If True, return a quantized version of the model. Default is False. |
|
**kwargs: parameters passed to the ``torchvision.models.quantization.QuantizableResNet`` |
|
base class. Please refer to the `source code |
|
<https://github.com/pytorch/vision/blob/main/torchvision/models/quantization/resnet.py>`_ |
|
for more details about this class. |
|
|
|
.. autoclass:: torchvision.models.quantization.ResNeXt101_32X8D_QuantizedWeights |
|
:members: |
|
|
|
.. autoclass:: torchvision.models.ResNeXt101_32X8D_Weights |
|
:members: |
|
:noindex: |
|
""" |
|
weights = (ResNeXt101_32X8D_QuantizedWeights if quantize else ResNeXt101_32X8D_Weights).verify(weights) |
|
|
|
_ovewrite_named_param(kwargs, "groups", 32) |
|
_ovewrite_named_param(kwargs, "width_per_group", 8) |
|
return _resnet(QuantizableBottleneck, [3, 4, 23, 3], weights, progress, quantize, **kwargs) |
|
|
|
|
|
@register_model(name="quantized_resnext101_64x4d") |
|
@handle_legacy_interface( |
|
weights=( |
|
"pretrained", |
|
lambda kwargs: ResNeXt101_64X4D_QuantizedWeights.IMAGENET1K_FBGEMM_V1 |
|
if kwargs.get("quantize", False) |
|
else ResNeXt101_64X4D_Weights.IMAGENET1K_V1, |
|
) |
|
) |
|
def resnext101_64x4d( |
|
*, |
|
weights: Optional[Union[ResNeXt101_64X4D_QuantizedWeights, ResNeXt101_64X4D_Weights]] = None, |
|
progress: bool = True, |
|
quantize: bool = False, |
|
**kwargs: Any, |
|
) -> QuantizableResNet: |
|
"""ResNeXt-101 64x4d model from |
|
`Aggregated Residual Transformation for Deep Neural Networks <https://arxiv.org/abs/1611.05431>`_ |
|
|
|
.. note:: |
|
Note that ``quantize = True`` returns a quantized model with 8 bit |
|
weights. Quantized models only support inference and run on CPUs. |
|
GPU inference is not yet supported. |
|
|
|
Args: |
|
weights (:class:`~torchvision.models.quantization.ResNeXt101_64X4D_QuantizedWeights` or :class:`~torchvision.models.ResNeXt101_64X4D_Weights`, optional): The |
|
pretrained weights for the model. See |
|
:class:`~torchvision.models.quantization.ResNet101_64X4D_QuantizedWeights` below for |
|
more details, and possible values. By default, no pre-trained |
|
weights are used. |
|
progress (bool, optional): If True, displays a progress bar of the |
|
download to stderr. Default is True. |
|
quantize (bool, optional): If True, return a quantized version of the model. Default is False. |
|
**kwargs: parameters passed to the ``torchvision.models.quantization.QuantizableResNet`` |
|
base class. Please refer to the `source code |
|
<https://github.com/pytorch/vision/blob/main/torchvision/models/quantization/resnet.py>`_ |
|
for more details about this class. |
|
|
|
.. autoclass:: torchvision.models.quantization.ResNeXt101_64X4D_QuantizedWeights |
|
:members: |
|
|
|
.. autoclass:: torchvision.models.ResNeXt101_64X4D_Weights |
|
:members: |
|
:noindex: |
|
""" |
|
weights = (ResNeXt101_64X4D_QuantizedWeights if quantize else ResNeXt101_64X4D_Weights).verify(weights) |
|
|
|
_ovewrite_named_param(kwargs, "groups", 64) |
|
_ovewrite_named_param(kwargs, "width_per_group", 4) |
|
return _resnet(QuantizableBottleneck, [3, 4, 23, 3], weights, progress, quantize, **kwargs) |
|
|