|
from functools import partial |
|
from typing import Any, List, Optional, Union |
|
|
|
import torch |
|
from torch import nn, Tensor |
|
from torch.ao.quantization import DeQuantStub, QuantStub |
|
|
|
from ...ops.misc import Conv2dNormActivation, SqueezeExcitation |
|
from ...transforms._presets import ImageClassification |
|
from .._api import register_model, Weights, WeightsEnum |
|
from .._meta import _IMAGENET_CATEGORIES |
|
from .._utils import _ovewrite_named_param, handle_legacy_interface |
|
from ..mobilenetv3 import ( |
|
_mobilenet_v3_conf, |
|
InvertedResidual, |
|
InvertedResidualConfig, |
|
MobileNet_V3_Large_Weights, |
|
MobileNetV3, |
|
) |
|
from .utils import _fuse_modules, _replace_relu |
|
|
|
|
|
__all__ = [ |
|
"QuantizableMobileNetV3", |
|
"MobileNet_V3_Large_QuantizedWeights", |
|
"mobilenet_v3_large", |
|
] |
|
|
|
|
|
class QuantizableSqueezeExcitation(SqueezeExcitation): |
|
_version = 2 |
|
|
|
def __init__(self, *args: Any, **kwargs: Any) -> None: |
|
kwargs["scale_activation"] = nn.Hardsigmoid |
|
super().__init__(*args, **kwargs) |
|
self.skip_mul = nn.quantized.FloatFunctional() |
|
|
|
def forward(self, input: Tensor) -> Tensor: |
|
return self.skip_mul.mul(self._scale(input), input) |
|
|
|
def fuse_model(self, is_qat: Optional[bool] = None) -> None: |
|
_fuse_modules(self, ["fc1", "activation"], is_qat, inplace=True) |
|
|
|
def _load_from_state_dict( |
|
self, |
|
state_dict, |
|
prefix, |
|
local_metadata, |
|
strict, |
|
missing_keys, |
|
unexpected_keys, |
|
error_msgs, |
|
): |
|
version = local_metadata.get("version", None) |
|
|
|
if hasattr(self, "qconfig") and (version is None or version < 2): |
|
default_state_dict = { |
|
"scale_activation.activation_post_process.scale": torch.tensor([1.0]), |
|
"scale_activation.activation_post_process.activation_post_process.scale": torch.tensor([1.0]), |
|
"scale_activation.activation_post_process.zero_point": torch.tensor([0], dtype=torch.int32), |
|
"scale_activation.activation_post_process.activation_post_process.zero_point": torch.tensor( |
|
[0], dtype=torch.int32 |
|
), |
|
"scale_activation.activation_post_process.fake_quant_enabled": torch.tensor([1]), |
|
"scale_activation.activation_post_process.observer_enabled": torch.tensor([1]), |
|
} |
|
for k, v in default_state_dict.items(): |
|
full_key = prefix + k |
|
if full_key not in state_dict: |
|
state_dict[full_key] = v |
|
|
|
super()._load_from_state_dict( |
|
state_dict, |
|
prefix, |
|
local_metadata, |
|
strict, |
|
missing_keys, |
|
unexpected_keys, |
|
error_msgs, |
|
) |
|
|
|
|
|
class QuantizableInvertedResidual(InvertedResidual): |
|
|
|
def __init__(self, *args: Any, **kwargs: Any) -> None: |
|
super().__init__(*args, se_layer=QuantizableSqueezeExcitation, **kwargs) |
|
self.skip_add = nn.quantized.FloatFunctional() |
|
|
|
def forward(self, x: Tensor) -> Tensor: |
|
if self.use_res_connect: |
|
return self.skip_add.add(x, self.block(x)) |
|
else: |
|
return self.block(x) |
|
|
|
|
|
class QuantizableMobileNetV3(MobileNetV3): |
|
def __init__(self, *args: Any, **kwargs: Any) -> None: |
|
""" |
|
MobileNet V3 main class |
|
|
|
Args: |
|
Inherits args from floating point MobileNetV3 |
|
""" |
|
super().__init__(*args, **kwargs) |
|
self.quant = QuantStub() |
|
self.dequant = DeQuantStub() |
|
|
|
def forward(self, x: Tensor) -> Tensor: |
|
x = self.quant(x) |
|
x = self._forward_impl(x) |
|
x = self.dequant(x) |
|
return x |
|
|
|
def fuse_model(self, is_qat: Optional[bool] = None) -> None: |
|
for m in self.modules(): |
|
if type(m) is Conv2dNormActivation: |
|
modules_to_fuse = ["0", "1"] |
|
if len(m) == 3 and type(m[2]) is nn.ReLU: |
|
modules_to_fuse.append("2") |
|
_fuse_modules(m, modules_to_fuse, is_qat, inplace=True) |
|
elif type(m) is QuantizableSqueezeExcitation: |
|
m.fuse_model(is_qat) |
|
|
|
|
|
def _mobilenet_v3_model( |
|
inverted_residual_setting: List[InvertedResidualConfig], |
|
last_channel: int, |
|
weights: Optional[WeightsEnum], |
|
progress: bool, |
|
quantize: bool, |
|
**kwargs: Any, |
|
) -> QuantizableMobileNetV3: |
|
if weights is not None: |
|
_ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"])) |
|
if "backend" in weights.meta: |
|
_ovewrite_named_param(kwargs, "backend", weights.meta["backend"]) |
|
backend = kwargs.pop("backend", "qnnpack") |
|
|
|
model = QuantizableMobileNetV3(inverted_residual_setting, last_channel, block=QuantizableInvertedResidual, **kwargs) |
|
_replace_relu(model) |
|
|
|
if quantize: |
|
|
|
|
|
|
|
|
|
model.fuse_model(is_qat=True) |
|
model.qconfig = torch.ao.quantization.get_default_qat_qconfig(backend) |
|
torch.ao.quantization.prepare_qat(model, inplace=True) |
|
|
|
if weights is not None: |
|
model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True)) |
|
|
|
if quantize: |
|
torch.ao.quantization.convert(model, inplace=True) |
|
model.eval() |
|
|
|
return model |
|
|
|
|
|
class MobileNet_V3_Large_QuantizedWeights(WeightsEnum): |
|
IMAGENET1K_QNNPACK_V1 = Weights( |
|
url="https://download.pytorch.org/models/quantized/mobilenet_v3_large_qnnpack-5bcacf28.pth", |
|
transforms=partial(ImageClassification, crop_size=224), |
|
meta={ |
|
"num_params": 5483032, |
|
"min_size": (1, 1), |
|
"categories": _IMAGENET_CATEGORIES, |
|
"backend": "qnnpack", |
|
"recipe": "https://github.com/pytorch/vision/tree/main/references/classification#qat-mobilenetv3", |
|
"unquantized": MobileNet_V3_Large_Weights.IMAGENET1K_V1, |
|
"_metrics": { |
|
"ImageNet-1K": { |
|
"acc@1": 73.004, |
|
"acc@5": 90.858, |
|
} |
|
}, |
|
"_ops": 0.217, |
|
"_file_size": 21.554, |
|
"_docs": """ |
|
These weights were produced by doing Quantization Aware Training (eager mode) on top of the unquantized |
|
weights listed below. |
|
""", |
|
}, |
|
) |
|
DEFAULT = IMAGENET1K_QNNPACK_V1 |
|
|
|
|
|
@register_model(name="quantized_mobilenet_v3_large") |
|
@handle_legacy_interface( |
|
weights=( |
|
"pretrained", |
|
lambda kwargs: MobileNet_V3_Large_QuantizedWeights.IMAGENET1K_QNNPACK_V1 |
|
if kwargs.get("quantize", False) |
|
else MobileNet_V3_Large_Weights.IMAGENET1K_V1, |
|
) |
|
) |
|
def mobilenet_v3_large( |
|
*, |
|
weights: Optional[Union[MobileNet_V3_Large_QuantizedWeights, MobileNet_V3_Large_Weights]] = None, |
|
progress: bool = True, |
|
quantize: bool = False, |
|
**kwargs: Any, |
|
) -> QuantizableMobileNetV3: |
|
""" |
|
MobileNetV3 (Large) model from |
|
`Searching for MobileNetV3 <https://arxiv.org/abs/1905.02244>`_. |
|
|
|
.. note:: |
|
Note that ``quantize = True`` returns a quantized model with 8 bit |
|
weights. Quantized models only support inference and run on CPUs. |
|
GPU inference is not yet supported. |
|
|
|
Args: |
|
weights (:class:`~torchvision.models.quantization.MobileNet_V3_Large_QuantizedWeights` or :class:`~torchvision.models.MobileNet_V3_Large_Weights`, optional): The |
|
pretrained weights for the model. See |
|
:class:`~torchvision.models.quantization.MobileNet_V3_Large_QuantizedWeights` below for |
|
more details, and possible values. By default, no pre-trained |
|
weights are used. |
|
progress (bool): If True, displays a progress bar of the |
|
download to stderr. Default is True. |
|
quantize (bool): If True, return a quantized version of the model. Default is False. |
|
**kwargs: parameters passed to the ``torchvision.models.quantization.MobileNet_V3_Large_QuantizedWeights`` |
|
base class. Please refer to the `source code |
|
<https://github.com/pytorch/vision/blob/main/torchvision/models/quantization/mobilenetv3.py>`_ |
|
for more details about this class. |
|
|
|
.. autoclass:: torchvision.models.quantization.MobileNet_V3_Large_QuantizedWeights |
|
:members: |
|
.. autoclass:: torchvision.models.MobileNet_V3_Large_Weights |
|
:members: |
|
:noindex: |
|
""" |
|
weights = (MobileNet_V3_Large_QuantizedWeights if quantize else MobileNet_V3_Large_Weights).verify(weights) |
|
|
|
inverted_residual_setting, last_channel = _mobilenet_v3_conf("mobilenet_v3_large", **kwargs) |
|
return _mobilenet_v3_model(inverted_residual_setting, last_channel, weights, progress, quantize, **kwargs) |
|
|