|
from functools import partial |
|
from typing import Any, Optional, Union |
|
|
|
from torch import nn, Tensor |
|
from torch.ao.quantization import DeQuantStub, QuantStub |
|
from torchvision.models.mobilenetv2 import InvertedResidual, MobileNet_V2_Weights, MobileNetV2 |
|
|
|
from ...ops.misc import Conv2dNormActivation |
|
from ...transforms._presets import ImageClassification |
|
from .._api import register_model, Weights, WeightsEnum |
|
from .._meta import _IMAGENET_CATEGORIES |
|
from .._utils import _ovewrite_named_param, handle_legacy_interface |
|
from .utils import _fuse_modules, _replace_relu, quantize_model |
|
|
|
|
|
__all__ = [ |
|
"QuantizableMobileNetV2", |
|
"MobileNet_V2_QuantizedWeights", |
|
"mobilenet_v2", |
|
] |
|
|
|
|
|
class QuantizableInvertedResidual(InvertedResidual): |
|
def __init__(self, *args: Any, **kwargs: Any) -> None: |
|
super().__init__(*args, **kwargs) |
|
self.skip_add = nn.quantized.FloatFunctional() |
|
|
|
def forward(self, x: Tensor) -> Tensor: |
|
if self.use_res_connect: |
|
return self.skip_add.add(x, self.conv(x)) |
|
else: |
|
return self.conv(x) |
|
|
|
def fuse_model(self, is_qat: Optional[bool] = None) -> None: |
|
for idx in range(len(self.conv)): |
|
if type(self.conv[idx]) is nn.Conv2d: |
|
_fuse_modules(self.conv, [str(idx), str(idx + 1)], is_qat, inplace=True) |
|
|
|
|
|
class QuantizableMobileNetV2(MobileNetV2): |
|
def __init__(self, *args: Any, **kwargs: Any) -> None: |
|
""" |
|
MobileNet V2 main class |
|
|
|
Args: |
|
Inherits args from floating point MobileNetV2 |
|
""" |
|
super().__init__(*args, **kwargs) |
|
self.quant = QuantStub() |
|
self.dequant = DeQuantStub() |
|
|
|
def forward(self, x: Tensor) -> Tensor: |
|
x = self.quant(x) |
|
x = self._forward_impl(x) |
|
x = self.dequant(x) |
|
return x |
|
|
|
def fuse_model(self, is_qat: Optional[bool] = None) -> None: |
|
for m in self.modules(): |
|
if type(m) is Conv2dNormActivation: |
|
_fuse_modules(m, ["0", "1", "2"], is_qat, inplace=True) |
|
if type(m) is QuantizableInvertedResidual: |
|
m.fuse_model(is_qat) |
|
|
|
|
|
class MobileNet_V2_QuantizedWeights(WeightsEnum): |
|
IMAGENET1K_QNNPACK_V1 = Weights( |
|
url="https://download.pytorch.org/models/quantized/mobilenet_v2_qnnpack_37f702c5.pth", |
|
transforms=partial(ImageClassification, crop_size=224), |
|
meta={ |
|
"num_params": 3504872, |
|
"min_size": (1, 1), |
|
"categories": _IMAGENET_CATEGORIES, |
|
"backend": "qnnpack", |
|
"recipe": "https://github.com/pytorch/vision/tree/main/references/classification#qat-mobilenetv2", |
|
"unquantized": MobileNet_V2_Weights.IMAGENET1K_V1, |
|
"_metrics": { |
|
"ImageNet-1K": { |
|
"acc@1": 71.658, |
|
"acc@5": 90.150, |
|
} |
|
}, |
|
"_ops": 0.301, |
|
"_file_size": 3.423, |
|
"_docs": """ |
|
These weights were produced by doing Quantization Aware Training (eager mode) on top of the unquantized |
|
weights listed below. |
|
""", |
|
}, |
|
) |
|
DEFAULT = IMAGENET1K_QNNPACK_V1 |
|
|
|
|
|
@register_model(name="quantized_mobilenet_v2") |
|
@handle_legacy_interface( |
|
weights=( |
|
"pretrained", |
|
lambda kwargs: MobileNet_V2_QuantizedWeights.IMAGENET1K_QNNPACK_V1 |
|
if kwargs.get("quantize", False) |
|
else MobileNet_V2_Weights.IMAGENET1K_V1, |
|
) |
|
) |
|
def mobilenet_v2( |
|
*, |
|
weights: Optional[Union[MobileNet_V2_QuantizedWeights, MobileNet_V2_Weights]] = None, |
|
progress: bool = True, |
|
quantize: bool = False, |
|
**kwargs: Any, |
|
) -> QuantizableMobileNetV2: |
|
""" |
|
Constructs a MobileNetV2 architecture from |
|
`MobileNetV2: Inverted Residuals and Linear Bottlenecks |
|
<https://arxiv.org/abs/1801.04381>`_. |
|
|
|
.. note:: |
|
Note that ``quantize = True`` returns a quantized model with 8 bit |
|
weights. Quantized models only support inference and run on CPUs. |
|
GPU inference is not yet supported. |
|
|
|
Args: |
|
weights (:class:`~torchvision.models.quantization.MobileNet_V2_QuantizedWeights` or :class:`~torchvision.models.MobileNet_V2_Weights`, optional): The |
|
pretrained weights for the model. See |
|
:class:`~torchvision.models.quantization.MobileNet_V2_QuantizedWeights` below for |
|
more details, and possible values. By default, no pre-trained |
|
weights are used. |
|
progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. |
|
quantize (bool, optional): If True, returns a quantized version of the model. Default is False. |
|
**kwargs: parameters passed to the ``torchvision.models.quantization.QuantizableMobileNetV2`` |
|
base class. Please refer to the `source code |
|
<https://github.com/pytorch/vision/blob/main/torchvision/models/quantization/mobilenetv2.py>`_ |
|
for more details about this class. |
|
.. autoclass:: torchvision.models.quantization.MobileNet_V2_QuantizedWeights |
|
:members: |
|
.. autoclass:: torchvision.models.MobileNet_V2_Weights |
|
:members: |
|
:noindex: |
|
""" |
|
weights = (MobileNet_V2_QuantizedWeights if quantize else MobileNet_V2_Weights).verify(weights) |
|
|
|
if weights is not None: |
|
_ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"])) |
|
if "backend" in weights.meta: |
|
_ovewrite_named_param(kwargs, "backend", weights.meta["backend"]) |
|
backend = kwargs.pop("backend", "qnnpack") |
|
|
|
model = QuantizableMobileNetV2(block=QuantizableInvertedResidual, **kwargs) |
|
_replace_relu(model) |
|
if quantize: |
|
quantize_model(model, backend) |
|
|
|
if weights is not None: |
|
model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True)) |
|
|
|
return model |
|
|