|
import warnings |
|
from collections import namedtuple |
|
from functools import partial |
|
from typing import Any, Callable, List, Optional, Tuple |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from torch import Tensor |
|
|
|
from ..transforms._presets import ImageClassification |
|
from ..utils import _log_api_usage_once |
|
from ._api import register_model, Weights, WeightsEnum |
|
from ._meta import _IMAGENET_CATEGORIES |
|
from ._utils import _ovewrite_named_param, handle_legacy_interface |
|
|
|
|
|
__all__ = ["GoogLeNet", "GoogLeNetOutputs", "_GoogLeNetOutputs", "GoogLeNet_Weights", "googlenet"] |
|
|
|
|
|
GoogLeNetOutputs = namedtuple("GoogLeNetOutputs", ["logits", "aux_logits2", "aux_logits1"]) |
|
GoogLeNetOutputs.__annotations__ = {"logits": Tensor, "aux_logits2": Optional[Tensor], "aux_logits1": Optional[Tensor]} |
|
|
|
|
|
|
|
_GoogLeNetOutputs = GoogLeNetOutputs |
|
|
|
|
|
class GoogLeNet(nn.Module): |
|
__constants__ = ["aux_logits", "transform_input"] |
|
|
|
def __init__( |
|
self, |
|
num_classes: int = 1000, |
|
aux_logits: bool = True, |
|
transform_input: bool = False, |
|
init_weights: Optional[bool] = None, |
|
blocks: Optional[List[Callable[..., nn.Module]]] = None, |
|
dropout: float = 0.2, |
|
dropout_aux: float = 0.7, |
|
) -> None: |
|
super().__init__() |
|
_log_api_usage_once(self) |
|
if blocks is None: |
|
blocks = [BasicConv2d, Inception, InceptionAux] |
|
if init_weights is None: |
|
warnings.warn( |
|
"The default weight initialization of GoogleNet will be changed in future releases of " |
|
"torchvision. If you wish to keep the old behavior (which leads to long initialization times" |
|
" due to scipy/scipy#11299), please set init_weights=True.", |
|
FutureWarning, |
|
) |
|
init_weights = True |
|
if len(blocks) != 3: |
|
raise ValueError(f"blocks length should be 3 instead of {len(blocks)}") |
|
conv_block = blocks[0] |
|
inception_block = blocks[1] |
|
inception_aux_block = blocks[2] |
|
|
|
self.aux_logits = aux_logits |
|
self.transform_input = transform_input |
|
|
|
self.conv1 = conv_block(3, 64, kernel_size=7, stride=2, padding=3) |
|
self.maxpool1 = nn.MaxPool2d(3, stride=2, ceil_mode=True) |
|
self.conv2 = conv_block(64, 64, kernel_size=1) |
|
self.conv3 = conv_block(64, 192, kernel_size=3, padding=1) |
|
self.maxpool2 = nn.MaxPool2d(3, stride=2, ceil_mode=True) |
|
|
|
self.inception3a = inception_block(192, 64, 96, 128, 16, 32, 32) |
|
self.inception3b = inception_block(256, 128, 128, 192, 32, 96, 64) |
|
self.maxpool3 = nn.MaxPool2d(3, stride=2, ceil_mode=True) |
|
|
|
self.inception4a = inception_block(480, 192, 96, 208, 16, 48, 64) |
|
self.inception4b = inception_block(512, 160, 112, 224, 24, 64, 64) |
|
self.inception4c = inception_block(512, 128, 128, 256, 24, 64, 64) |
|
self.inception4d = inception_block(512, 112, 144, 288, 32, 64, 64) |
|
self.inception4e = inception_block(528, 256, 160, 320, 32, 128, 128) |
|
self.maxpool4 = nn.MaxPool2d(2, stride=2, ceil_mode=True) |
|
|
|
self.inception5a = inception_block(832, 256, 160, 320, 32, 128, 128) |
|
self.inception5b = inception_block(832, 384, 192, 384, 48, 128, 128) |
|
|
|
if aux_logits: |
|
self.aux1 = inception_aux_block(512, num_classes, dropout=dropout_aux) |
|
self.aux2 = inception_aux_block(528, num_classes, dropout=dropout_aux) |
|
else: |
|
self.aux1 = None |
|
self.aux2 = None |
|
|
|
self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) |
|
self.dropout = nn.Dropout(p=dropout) |
|
self.fc = nn.Linear(1024, num_classes) |
|
|
|
if init_weights: |
|
for m in self.modules(): |
|
if isinstance(m, nn.Conv2d) or isinstance(m, nn.Linear): |
|
torch.nn.init.trunc_normal_(m.weight, mean=0.0, std=0.01, a=-2, b=2) |
|
elif isinstance(m, nn.BatchNorm2d): |
|
nn.init.constant_(m.weight, 1) |
|
nn.init.constant_(m.bias, 0) |
|
|
|
def _transform_input(self, x: Tensor) -> Tensor: |
|
if self.transform_input: |
|
x_ch0 = torch.unsqueeze(x[:, 0], 1) * (0.229 / 0.5) + (0.485 - 0.5) / 0.5 |
|
x_ch1 = torch.unsqueeze(x[:, 1], 1) * (0.224 / 0.5) + (0.456 - 0.5) / 0.5 |
|
x_ch2 = torch.unsqueeze(x[:, 2], 1) * (0.225 / 0.5) + (0.406 - 0.5) / 0.5 |
|
x = torch.cat((x_ch0, x_ch1, x_ch2), 1) |
|
return x |
|
|
|
def _forward(self, x: Tensor) -> Tuple[Tensor, Optional[Tensor], Optional[Tensor]]: |
|
|
|
x = self.conv1(x) |
|
|
|
x = self.maxpool1(x) |
|
|
|
x = self.conv2(x) |
|
|
|
x = self.conv3(x) |
|
|
|
x = self.maxpool2(x) |
|
|
|
|
|
x = self.inception3a(x) |
|
|
|
x = self.inception3b(x) |
|
|
|
x = self.maxpool3(x) |
|
|
|
x = self.inception4a(x) |
|
|
|
aux1: Optional[Tensor] = None |
|
if self.aux1 is not None: |
|
if self.training: |
|
aux1 = self.aux1(x) |
|
|
|
x = self.inception4b(x) |
|
|
|
x = self.inception4c(x) |
|
|
|
x = self.inception4d(x) |
|
|
|
aux2: Optional[Tensor] = None |
|
if self.aux2 is not None: |
|
if self.training: |
|
aux2 = self.aux2(x) |
|
|
|
x = self.inception4e(x) |
|
|
|
x = self.maxpool4(x) |
|
|
|
x = self.inception5a(x) |
|
|
|
x = self.inception5b(x) |
|
|
|
|
|
x = self.avgpool(x) |
|
|
|
x = torch.flatten(x, 1) |
|
|
|
x = self.dropout(x) |
|
x = self.fc(x) |
|
|
|
return x, aux2, aux1 |
|
|
|
@torch.jit.unused |
|
def eager_outputs(self, x: Tensor, aux2: Tensor, aux1: Optional[Tensor]) -> GoogLeNetOutputs: |
|
if self.training and self.aux_logits: |
|
return _GoogLeNetOutputs(x, aux2, aux1) |
|
else: |
|
return x |
|
|
|
def forward(self, x: Tensor) -> GoogLeNetOutputs: |
|
x = self._transform_input(x) |
|
x, aux2, aux1 = self._forward(x) |
|
aux_defined = self.training and self.aux_logits |
|
if torch.jit.is_scripting(): |
|
if not aux_defined: |
|
warnings.warn("Scripted GoogleNet always returns GoogleNetOutputs Tuple") |
|
return GoogLeNetOutputs(x, aux2, aux1) |
|
else: |
|
return self.eager_outputs(x, aux2, aux1) |
|
|
|
|
|
class Inception(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels: int, |
|
ch1x1: int, |
|
ch3x3red: int, |
|
ch3x3: int, |
|
ch5x5red: int, |
|
ch5x5: int, |
|
pool_proj: int, |
|
conv_block: Optional[Callable[..., nn.Module]] = None, |
|
) -> None: |
|
super().__init__() |
|
if conv_block is None: |
|
conv_block = BasicConv2d |
|
self.branch1 = conv_block(in_channels, ch1x1, kernel_size=1) |
|
|
|
self.branch2 = nn.Sequential( |
|
conv_block(in_channels, ch3x3red, kernel_size=1), conv_block(ch3x3red, ch3x3, kernel_size=3, padding=1) |
|
) |
|
|
|
self.branch3 = nn.Sequential( |
|
conv_block(in_channels, ch5x5red, kernel_size=1), |
|
|
|
|
|
conv_block(ch5x5red, ch5x5, kernel_size=3, padding=1), |
|
) |
|
|
|
self.branch4 = nn.Sequential( |
|
nn.MaxPool2d(kernel_size=3, stride=1, padding=1, ceil_mode=True), |
|
conv_block(in_channels, pool_proj, kernel_size=1), |
|
) |
|
|
|
def _forward(self, x: Tensor) -> List[Tensor]: |
|
branch1 = self.branch1(x) |
|
branch2 = self.branch2(x) |
|
branch3 = self.branch3(x) |
|
branch4 = self.branch4(x) |
|
|
|
outputs = [branch1, branch2, branch3, branch4] |
|
return outputs |
|
|
|
def forward(self, x: Tensor) -> Tensor: |
|
outputs = self._forward(x) |
|
return torch.cat(outputs, 1) |
|
|
|
|
|
class InceptionAux(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels: int, |
|
num_classes: int, |
|
conv_block: Optional[Callable[..., nn.Module]] = None, |
|
dropout: float = 0.7, |
|
) -> None: |
|
super().__init__() |
|
if conv_block is None: |
|
conv_block = BasicConv2d |
|
self.conv = conv_block(in_channels, 128, kernel_size=1) |
|
|
|
self.fc1 = nn.Linear(2048, 1024) |
|
self.fc2 = nn.Linear(1024, num_classes) |
|
self.dropout = nn.Dropout(p=dropout) |
|
|
|
def forward(self, x: Tensor) -> Tensor: |
|
|
|
x = F.adaptive_avg_pool2d(x, (4, 4)) |
|
|
|
x = self.conv(x) |
|
|
|
x = torch.flatten(x, 1) |
|
|
|
x = F.relu(self.fc1(x), inplace=True) |
|
|
|
x = self.dropout(x) |
|
|
|
x = self.fc2(x) |
|
|
|
|
|
return x |
|
|
|
|
|
class BasicConv2d(nn.Module): |
|
def __init__(self, in_channels: int, out_channels: int, **kwargs: Any) -> None: |
|
super().__init__() |
|
self.conv = nn.Conv2d(in_channels, out_channels, bias=False, **kwargs) |
|
self.bn = nn.BatchNorm2d(out_channels, eps=0.001) |
|
|
|
def forward(self, x: Tensor) -> Tensor: |
|
x = self.conv(x) |
|
x = self.bn(x) |
|
return F.relu(x, inplace=True) |
|
|
|
|
|
class GoogLeNet_Weights(WeightsEnum): |
|
IMAGENET1K_V1 = Weights( |
|
url="https://download.pytorch.org/models/googlenet-1378be20.pth", |
|
transforms=partial(ImageClassification, crop_size=224), |
|
meta={ |
|
"num_params": 6624904, |
|
"min_size": (15, 15), |
|
"categories": _IMAGENET_CATEGORIES, |
|
"recipe": "https://github.com/pytorch/vision/tree/main/references/classification#googlenet", |
|
"_metrics": { |
|
"ImageNet-1K": { |
|
"acc@1": 69.778, |
|
"acc@5": 89.530, |
|
} |
|
}, |
|
"_ops": 1.498, |
|
"_file_size": 49.731, |
|
"_docs": """These weights are ported from the original paper.""", |
|
}, |
|
) |
|
DEFAULT = IMAGENET1K_V1 |
|
|
|
|
|
@register_model() |
|
@handle_legacy_interface(weights=("pretrained", GoogLeNet_Weights.IMAGENET1K_V1)) |
|
def googlenet(*, weights: Optional[GoogLeNet_Weights] = None, progress: bool = True, **kwargs: Any) -> GoogLeNet: |
|
"""GoogLeNet (Inception v1) model architecture from |
|
`Going Deeper with Convolutions <http://arxiv.org/abs/1409.4842>`_. |
|
|
|
Args: |
|
weights (:class:`~torchvision.models.GoogLeNet_Weights`, optional): The |
|
pretrained weights for the model. See |
|
:class:`~torchvision.models.GoogLeNet_Weights` below for |
|
more details, and possible values. By default, no pre-trained |
|
weights are used. |
|
progress (bool, optional): If True, displays a progress bar of the |
|
download to stderr. Default is True. |
|
**kwargs: parameters passed to the ``torchvision.models.GoogLeNet`` |
|
base class. Please refer to the `source code |
|
<https://github.com/pytorch/vision/blob/main/torchvision/models/googlenet.py>`_ |
|
for more details about this class. |
|
.. autoclass:: torchvision.models.GoogLeNet_Weights |
|
:members: |
|
""" |
|
weights = GoogLeNet_Weights.verify(weights) |
|
|
|
original_aux_logits = kwargs.get("aux_logits", False) |
|
if weights is not None: |
|
if "transform_input" not in kwargs: |
|
_ovewrite_named_param(kwargs, "transform_input", True) |
|
_ovewrite_named_param(kwargs, "aux_logits", True) |
|
_ovewrite_named_param(kwargs, "init_weights", False) |
|
_ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"])) |
|
|
|
model = GoogLeNet(**kwargs) |
|
|
|
if weights is not None: |
|
model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True)) |
|
if not original_aux_logits: |
|
model.aux_logits = False |
|
model.aux1 = None |
|
model.aux2 = None |
|
else: |
|
warnings.warn( |
|
"auxiliary heads in the pretrained googlenet model are NOT pretrained, so make sure to train them" |
|
) |
|
|
|
return model |
|
|