|
import os |
|
from pathlib import Path |
|
from typing import Any, Callable, List, Optional, Tuple, Union |
|
|
|
import torch.utils.data as data |
|
|
|
from ..utils import _log_api_usage_once |
|
|
|
|
|
class VisionDataset(data.Dataset): |
|
""" |
|
Base Class For making datasets which are compatible with torchvision. |
|
It is necessary to override the ``__getitem__`` and ``__len__`` method. |
|
|
|
Args: |
|
root (string, optional): Root directory of dataset. Only used for `__repr__`. |
|
transforms (callable, optional): A function/transforms that takes in |
|
an image and a label and returns the transformed versions of both. |
|
transform (callable, optional): A function/transform that takes in a PIL image |
|
and returns a transformed version. E.g, ``transforms.RandomCrop`` |
|
target_transform (callable, optional): A function/transform that takes in the |
|
target and transforms it. |
|
|
|
.. note:: |
|
|
|
:attr:`transforms` and the combination of :attr:`transform` and :attr:`target_transform` are mutually exclusive. |
|
""" |
|
|
|
_repr_indent = 4 |
|
|
|
def __init__( |
|
self, |
|
root: Union[str, Path] = None, |
|
transforms: Optional[Callable] = None, |
|
transform: Optional[Callable] = None, |
|
target_transform: Optional[Callable] = None, |
|
) -> None: |
|
_log_api_usage_once(self) |
|
if isinstance(root, str): |
|
root = os.path.expanduser(root) |
|
self.root = root |
|
|
|
has_transforms = transforms is not None |
|
has_separate_transform = transform is not None or target_transform is not None |
|
if has_transforms and has_separate_transform: |
|
raise ValueError("Only transforms or transform/target_transform can be passed as argument") |
|
|
|
|
|
self.transform = transform |
|
self.target_transform = target_transform |
|
|
|
if has_separate_transform: |
|
transforms = StandardTransform(transform, target_transform) |
|
self.transforms = transforms |
|
|
|
def __getitem__(self, index: int) -> Any: |
|
""" |
|
Args: |
|
index (int): Index |
|
|
|
Returns: |
|
(Any): Sample and meta data, optionally transformed by the respective transforms. |
|
""" |
|
raise NotImplementedError |
|
|
|
def __len__(self) -> int: |
|
raise NotImplementedError |
|
|
|
def __repr__(self) -> str: |
|
head = "Dataset " + self.__class__.__name__ |
|
body = [f"Number of datapoints: {self.__len__()}"] |
|
if self.root is not None: |
|
body.append(f"Root location: {self.root}") |
|
body += self.extra_repr().splitlines() |
|
if hasattr(self, "transforms") and self.transforms is not None: |
|
body += [repr(self.transforms)] |
|
lines = [head] + [" " * self._repr_indent + line for line in body] |
|
return "\n".join(lines) |
|
|
|
def _format_transform_repr(self, transform: Callable, head: str) -> List[str]: |
|
lines = transform.__repr__().splitlines() |
|
return [f"{head}{lines[0]}"] + ["{}{}".format(" " * len(head), line) for line in lines[1:]] |
|
|
|
def extra_repr(self) -> str: |
|
return "" |
|
|
|
|
|
class StandardTransform: |
|
def __init__(self, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None) -> None: |
|
self.transform = transform |
|
self.target_transform = target_transform |
|
|
|
def __call__(self, input: Any, target: Any) -> Tuple[Any, Any]: |
|
if self.transform is not None: |
|
input = self.transform(input) |
|
if self.target_transform is not None: |
|
target = self.target_transform(target) |
|
return input, target |
|
|
|
def _format_transform_repr(self, transform: Callable, head: str) -> List[str]: |
|
lines = transform.__repr__().splitlines() |
|
return [f"{head}{lines[0]}"] + ["{}{}".format(" " * len(head), line) for line in lines[1:]] |
|
|
|
def __repr__(self) -> str: |
|
body = [self.__class__.__name__] |
|
if self.transform is not None: |
|
body += self._format_transform_repr(self.transform, "Transform: ") |
|
if self.target_transform is not None: |
|
body += self._format_transform_repr(self.target_transform, "Target transform: ") |
|
|
|
return "\n".join(body) |
|
|