|
import os |
|
from pathlib import Path |
|
from typing import Any, Callable, Optional, Tuple, Union |
|
|
|
from .folder import default_loader |
|
|
|
from .utils import check_integrity, download_and_extract_archive, download_url |
|
from .vision import VisionDataset |
|
|
|
|
|
class SBU(VisionDataset): |
|
"""`SBU Captioned Photo <http://www.cs.virginia.edu/~vicente/sbucaptions/>`_ Dataset. |
|
|
|
Args: |
|
root (str or ``pathlib.Path``): Root directory of dataset where tarball |
|
``SBUCaptionedPhotoDataset.tar.gz`` exists. |
|
transform (callable, optional): A function/transform that takes in a PIL image or torch.Tensor, depends on the given loader, |
|
and returns a transformed version. E.g, ``transforms.RandomCrop`` |
|
target_transform (callable, optional): A function/transform that takes in the |
|
target and transforms it. |
|
download (bool, optional): If True, downloads the dataset from the internet and |
|
puts it in root directory. If dataset is already downloaded, it is not |
|
downloaded again. |
|
loader (callable, optional): A function to load an image given its path. |
|
By default, it uses PIL as its image loader, but users could also pass in |
|
``torchvision.io.decode_image`` for decoding image data into tensors directly. |
|
""" |
|
|
|
url = "https://www.cs.rice.edu/~vo9/sbucaptions/SBUCaptionedPhotoDataset.tar.gz" |
|
filename = "SBUCaptionedPhotoDataset.tar.gz" |
|
md5_checksum = "9aec147b3488753cf758b4d493422285" |
|
|
|
def __init__( |
|
self, |
|
root: Union[str, Path], |
|
transform: Optional[Callable] = None, |
|
target_transform: Optional[Callable] = None, |
|
download: bool = True, |
|
loader: Callable[[str], Any] = default_loader, |
|
) -> None: |
|
super().__init__(root, transform=transform, target_transform=target_transform) |
|
self.loader = loader |
|
|
|
if download: |
|
self.download() |
|
|
|
if not self._check_integrity(): |
|
raise RuntimeError("Dataset not found or corrupted. You can use download=True to download it") |
|
|
|
|
|
self.photos = [] |
|
self.captions = [] |
|
|
|
file1 = os.path.join(self.root, "dataset", "SBU_captioned_photo_dataset_urls.txt") |
|
file2 = os.path.join(self.root, "dataset", "SBU_captioned_photo_dataset_captions.txt") |
|
|
|
for line1, line2 in zip(open(file1), open(file2)): |
|
url = line1.rstrip() |
|
photo = os.path.basename(url) |
|
filename = os.path.join(self.root, "dataset", photo) |
|
if os.path.exists(filename): |
|
caption = line2.rstrip() |
|
self.photos.append(photo) |
|
self.captions.append(caption) |
|
|
|
def __getitem__(self, index: int) -> Tuple[Any, Any]: |
|
""" |
|
Args: |
|
index (int): Index |
|
|
|
Returns: |
|
tuple: (image, target) where target is a caption for the photo. |
|
""" |
|
filename = os.path.join(self.root, "dataset", self.photos[index]) |
|
img = self.loader(filename) |
|
if self.transform is not None: |
|
img = self.transform(img) |
|
|
|
target = self.captions[index] |
|
if self.target_transform is not None: |
|
target = self.target_transform(target) |
|
|
|
return img, target |
|
|
|
def __len__(self) -> int: |
|
"""The number of photos in the dataset.""" |
|
return len(self.photos) |
|
|
|
def _check_integrity(self) -> bool: |
|
"""Check the md5 checksum of the downloaded tarball.""" |
|
root = self.root |
|
fpath = os.path.join(root, self.filename) |
|
if not check_integrity(fpath, self.md5_checksum): |
|
return False |
|
return True |
|
|
|
def download(self) -> None: |
|
"""Download and extract the tarball, and download each individual photo.""" |
|
|
|
if self._check_integrity(): |
|
return |
|
|
|
download_and_extract_archive(self.url, self.root, self.root, self.filename, self.md5_checksum) |
|
|
|
|
|
with open(os.path.join(self.root, "dataset", "SBU_captioned_photo_dataset_urls.txt")) as fh: |
|
for line in fh: |
|
url = line.rstrip() |
|
try: |
|
download_url(url, os.path.join(self.root, "dataset")) |
|
except OSError: |
|
|
|
|
|
pass |
|
|