|
from pathlib import Path |
|
from typing import Any, Callable, Optional, Tuple, Union |
|
|
|
from .folder import default_loader, make_dataset |
|
from .utils import download_and_extract_archive, verify_str_arg |
|
from .vision import VisionDataset |
|
|
|
|
|
class RenderedSST2(VisionDataset): |
|
"""`The Rendered SST2 Dataset <https://github.com/openai/CLIP/blob/main/data/rendered-sst2.md>`_. |
|
|
|
Rendered SST2 is an image classification dataset used to evaluate the models capability on optical |
|
character recognition. This dataset was generated by rendering sentences in the Standford Sentiment |
|
Treebank v2 dataset. |
|
|
|
This dataset contains two classes (positive and negative) and is divided in three splits: a train |
|
split containing 6920 images (3610 positive and 3310 negative), a validation split containing 872 images |
|
(444 positive and 428 negative), and a test split containing 1821 images (909 positive and 912 negative). |
|
|
|
Args: |
|
root (str or ``pathlib.Path``): Root directory of the dataset. |
|
split (string, optional): The dataset split, supports ``"train"`` (default), `"val"` and ``"test"``. |
|
transform (callable, optional): A function/transform that takes in a PIL image or torch.Tensor, depends on the given loader, |
|
and returns a transformed version. E.g, ``transforms.RandomCrop`` |
|
target_transform (callable, optional): A function/transform that takes in the target and transforms it. |
|
download (bool, optional): If True, downloads the dataset from the internet and |
|
puts it in root directory. If dataset is already downloaded, it is not |
|
downloaded again. Default is False. |
|
loader (callable, optional): A function to load an image given its path. |
|
By default, it uses PIL as its image loader, but users could also pass in |
|
``torchvision.io.decode_image`` for decoding image data into tensors directly. |
|
""" |
|
|
|
_URL = "https://openaipublic.azureedge.net/clip/data/rendered-sst2.tgz" |
|
_MD5 = "2384d08e9dcfa4bd55b324e610496ee5" |
|
|
|
def __init__( |
|
self, |
|
root: Union[str, Path], |
|
split: str = "train", |
|
transform: Optional[Callable] = None, |
|
target_transform: Optional[Callable] = None, |
|
download: bool = False, |
|
loader: Callable[[str], Any] = default_loader, |
|
) -> None: |
|
super().__init__(root, transform=transform, target_transform=target_transform) |
|
self._split = verify_str_arg(split, "split", ("train", "val", "test")) |
|
self._split_to_folder = {"train": "train", "val": "valid", "test": "test"} |
|
self._base_folder = Path(self.root) / "rendered-sst2" |
|
self.classes = ["negative", "positive"] |
|
self.class_to_idx = {"negative": 0, "positive": 1} |
|
|
|
if download: |
|
self._download() |
|
|
|
if not self._check_exists(): |
|
raise RuntimeError("Dataset not found. You can use download=True to download it") |
|
|
|
self._samples = make_dataset(str(self._base_folder / self._split_to_folder[self._split]), extensions=("png",)) |
|
self.loader = loader |
|
|
|
def __len__(self) -> int: |
|
return len(self._samples) |
|
|
|
def __getitem__(self, idx: int) -> Tuple[Any, Any]: |
|
image_file, label = self._samples[idx] |
|
image = self.loader(image_file) |
|
|
|
if self.transform: |
|
image = self.transform(image) |
|
|
|
if self.target_transform: |
|
label = self.target_transform(label) |
|
|
|
return image, label |
|
|
|
def extra_repr(self) -> str: |
|
return f"split={self._split}" |
|
|
|
def _check_exists(self) -> bool: |
|
for class_label in set(self.classes): |
|
if not (self._base_folder / self._split_to_folder[self._split] / class_label).is_dir(): |
|
return False |
|
return True |
|
|
|
def _download(self) -> None: |
|
if self._check_exists(): |
|
return |
|
download_and_extract_archive(self._URL, download_root=self.root, md5=self._MD5) |
|
|