|
import pathlib |
|
from typing import Any, Callable, Optional, Tuple, Union |
|
|
|
from PIL import Image |
|
|
|
from .utils import _decompress, download_file_from_google_drive, verify_str_arg |
|
from .vision import VisionDataset |
|
|
|
|
|
class PCAM(VisionDataset): |
|
"""`PCAM Dataset <https://github.com/basveeling/pcam>`_. |
|
|
|
The PatchCamelyon dataset is a binary classification dataset with 327,680 |
|
color images (96px x 96px), extracted from histopathologic scans of lymph node |
|
sections. Each image is annotated with a binary label indicating presence of |
|
metastatic tissue. |
|
|
|
This dataset requires the ``h5py`` package which you can install with ``pip install h5py``. |
|
|
|
Args: |
|
root (str or ``pathlib.Path``): Root directory of the dataset. |
|
split (string, optional): The dataset split, supports ``"train"`` (default), ``"test"`` or ``"val"``. |
|
transform (callable, optional): A function/transform that takes in a PIL image and returns a transformed |
|
version. E.g, ``transforms.RandomCrop``. |
|
target_transform (callable, optional): A function/transform that takes in the target and transforms it. |
|
download (bool, optional): If True, downloads the dataset from the internet and puts it into ``root/pcam``. If |
|
dataset is already downloaded, it is not downloaded again. |
|
|
|
.. warning:: |
|
|
|
To download the dataset `gdown <https://github.com/wkentaro/gdown>`_ is required. |
|
""" |
|
|
|
_FILES = { |
|
"train": { |
|
"images": ( |
|
"camelyonpatch_level_2_split_train_x.h5", |
|
"1Ka0XfEMiwgCYPdTI-vv6eUElOBnKFKQ2", |
|
"1571f514728f59376b705fc836ff4b63", |
|
), |
|
"targets": ( |
|
"camelyonpatch_level_2_split_train_y.h5", |
|
"1269yhu3pZDP8UYFQs-NYs3FPwuK-nGSG", |
|
"35c2d7259d906cfc8143347bb8e05be7", |
|
), |
|
}, |
|
"test": { |
|
"images": ( |
|
"camelyonpatch_level_2_split_test_x.h5", |
|
"1qV65ZqZvWzuIVthK8eVDhIwrbnsJdbg_", |
|
"d8c2d60d490dbd479f8199bdfa0cf6ec", |
|
), |
|
"targets": ( |
|
"camelyonpatch_level_2_split_test_y.h5", |
|
"17BHrSrwWKjYsOgTMmoqrIjDy6Fa2o_gP", |
|
"60a7035772fbdb7f34eb86d4420cf66a", |
|
), |
|
}, |
|
"val": { |
|
"images": ( |
|
"camelyonpatch_level_2_split_valid_x.h5", |
|
"1hgshYGWK8V-eGRy8LToWJJgDU_rXWVJ3", |
|
"d5b63470df7cfa627aeec8b9dc0c066e", |
|
), |
|
"targets": ( |
|
"camelyonpatch_level_2_split_valid_y.h5", |
|
"1bH8ZRbhSVAhScTS0p9-ZzGnX91cHT3uO", |
|
"2b85f58b927af9964a4c15b8f7e8f179", |
|
), |
|
}, |
|
} |
|
|
|
def __init__( |
|
self, |
|
root: Union[str, pathlib.Path], |
|
split: str = "train", |
|
transform: Optional[Callable] = None, |
|
target_transform: Optional[Callable] = None, |
|
download: bool = False, |
|
): |
|
try: |
|
import h5py |
|
|
|
self.h5py = h5py |
|
except ImportError: |
|
raise RuntimeError( |
|
"h5py is not found. This dataset needs to have h5py installed: please run pip install h5py" |
|
) |
|
|
|
self._split = verify_str_arg(split, "split", ("train", "test", "val")) |
|
|
|
super().__init__(root, transform=transform, target_transform=target_transform) |
|
self._base_folder = pathlib.Path(self.root) / "pcam" |
|
|
|
if download: |
|
self._download() |
|
|
|
if not self._check_exists(): |
|
raise RuntimeError("Dataset not found. You can use download=True to download it") |
|
|
|
def __len__(self) -> int: |
|
images_file = self._FILES[self._split]["images"][0] |
|
with self.h5py.File(self._base_folder / images_file) as images_data: |
|
return images_data["x"].shape[0] |
|
|
|
def __getitem__(self, idx: int) -> Tuple[Any, Any]: |
|
images_file = self._FILES[self._split]["images"][0] |
|
with self.h5py.File(self._base_folder / images_file) as images_data: |
|
image = Image.fromarray(images_data["x"][idx]).convert("RGB") |
|
|
|
targets_file = self._FILES[self._split]["targets"][0] |
|
with self.h5py.File(self._base_folder / targets_file) as targets_data: |
|
target = int(targets_data["y"][idx, 0, 0, 0]) |
|
|
|
if self.transform: |
|
image = self.transform(image) |
|
if self.target_transform: |
|
target = self.target_transform(target) |
|
|
|
return image, target |
|
|
|
def _check_exists(self) -> bool: |
|
images_file = self._FILES[self._split]["images"][0] |
|
targets_file = self._FILES[self._split]["targets"][0] |
|
return all(self._base_folder.joinpath(h5_file).exists() for h5_file in (images_file, targets_file)) |
|
|
|
def _download(self) -> None: |
|
if self._check_exists(): |
|
return |
|
|
|
for file_name, file_id, md5 in self._FILES[self._split].values(): |
|
archive_name = file_name + ".gz" |
|
download_file_from_google_drive(file_id, str(self._base_folder), filename=archive_name, md5=md5) |
|
_decompress(str(self._base_folder / archive_name)) |
|
|