|
from pathlib import Path |
|
from typing import Any, Callable, Optional, Tuple, Union |
|
|
|
from .folder import default_loader, find_classes, make_dataset |
|
from .utils import download_and_extract_archive, verify_str_arg |
|
from .vision import VisionDataset |
|
|
|
|
|
class Imagenette(VisionDataset): |
|
"""`Imagenette <https://github.com/fastai/imagenette#imagenette-1>`_ image classification dataset. |
|
|
|
Args: |
|
root (str or ``pathlib.Path``): Root directory of the Imagenette dataset. |
|
split (string, optional): The dataset split. Supports ``"train"`` (default), and ``"val"``. |
|
size (string, optional): The image size. Supports ``"full"`` (default), ``"320px"``, and ``"160px"``. |
|
download (bool, optional): If ``True``, downloads the dataset components and places them in ``root``. Already |
|
downloaded archives are not downloaded again. |
|
transform (callable, optional): A function/transform that takes in a PIL image or torch.Tensor, depends on the given loader, |
|
and returns a transformed version. E.g, ``transforms.RandomCrop`` |
|
target_transform (callable, optional): A function/transform that takes in the target and transforms it. |
|
loader (callable, optional): A function to load an image given its path. |
|
By default, it uses PIL as its image loader, but users could also pass in |
|
``torchvision.io.decode_image`` for decoding image data into tensors directly. |
|
|
|
Attributes: |
|
classes (list): List of the class name tuples. |
|
class_to_idx (dict): Dict with items (class name, class index). |
|
wnids (list): List of the WordNet IDs. |
|
wnid_to_idx (dict): Dict with items (WordNet ID, class index). |
|
""" |
|
|
|
_ARCHIVES = { |
|
"full": ("https://s3.amazonaws.com/fast-ai-imageclas/imagenette2.tgz", "fe2fc210e6bb7c5664d602c3cd71e612"), |
|
"320px": ("https://s3.amazonaws.com/fast-ai-imageclas/imagenette2-320.tgz", "3df6f0d01a2c9592104656642f5e78a3"), |
|
"160px": ("https://s3.amazonaws.com/fast-ai-imageclas/imagenette2-160.tgz", "e793b78cc4c9e9a4ccc0c1155377a412"), |
|
} |
|
_WNID_TO_CLASS = { |
|
"n01440764": ("tench", "Tinca tinca"), |
|
"n02102040": ("English springer", "English springer spaniel"), |
|
"n02979186": ("cassette player",), |
|
"n03000684": ("chain saw", "chainsaw"), |
|
"n03028079": ("church", "church building"), |
|
"n03394916": ("French horn", "horn"), |
|
"n03417042": ("garbage truck", "dustcart"), |
|
"n03425413": ("gas pump", "gasoline pump", "petrol pump", "island dispenser"), |
|
"n03445777": ("golf ball",), |
|
"n03888257": ("parachute", "chute"), |
|
} |
|
|
|
def __init__( |
|
self, |
|
root: Union[str, Path], |
|
split: str = "train", |
|
size: str = "full", |
|
download=False, |
|
transform: Optional[Callable] = None, |
|
target_transform: Optional[Callable] = None, |
|
loader: Callable[[str], Any] = default_loader, |
|
) -> None: |
|
super().__init__(root, transform=transform, target_transform=target_transform) |
|
|
|
self._split = verify_str_arg(split, "split", ["train", "val"]) |
|
self._size = verify_str_arg(size, "size", ["full", "320px", "160px"]) |
|
|
|
self._url, self._md5 = self._ARCHIVES[self._size] |
|
self._size_root = Path(self.root) / Path(self._url).stem |
|
self._image_root = str(self._size_root / self._split) |
|
|
|
if download: |
|
self._download() |
|
elif not self._check_exists(): |
|
raise RuntimeError("Dataset not found. You can use download=True to download it.") |
|
|
|
self.wnids, self.wnid_to_idx = find_classes(self._image_root) |
|
self.classes = [self._WNID_TO_CLASS[wnid] for wnid in self.wnids] |
|
self.class_to_idx = { |
|
class_name: idx for wnid, idx in self.wnid_to_idx.items() for class_name in self._WNID_TO_CLASS[wnid] |
|
} |
|
self._samples = make_dataset(self._image_root, self.wnid_to_idx, extensions=".jpeg") |
|
self.loader = loader |
|
|
|
def _check_exists(self) -> bool: |
|
return self._size_root.exists() |
|
|
|
def _download(self): |
|
if self._check_exists(): |
|
return |
|
|
|
download_and_extract_archive(self._url, self.root, md5=self._md5) |
|
|
|
def __getitem__(self, idx: int) -> Tuple[Any, Any]: |
|
path, label = self._samples[idx] |
|
image = self.loader(path) |
|
|
|
if self.transform is not None: |
|
image = self.transform(image) |
|
|
|
if self.target_transform is not None: |
|
label = self.target_transform(label) |
|
|
|
return image, label |
|
|
|
def __len__(self) -> int: |
|
return len(self._samples) |
|
|