|
import csv |
|
import pathlib |
|
from typing import Any, Callable, Optional, Tuple, Union |
|
|
|
import PIL |
|
|
|
from .folder import make_dataset |
|
from .utils import download_and_extract_archive, verify_str_arg |
|
from .vision import VisionDataset |
|
|
|
|
|
class GTSRB(VisionDataset): |
|
"""`German Traffic Sign Recognition Benchmark (GTSRB) <https://benchmark.ini.rub.de/>`_ Dataset. |
|
|
|
Args: |
|
root (str or ``pathlib.Path``): Root directory of the dataset. |
|
split (string, optional): The dataset split, supports ``"train"`` (default), or ``"test"``. |
|
transform (callable, optional): A function/transform that takes in a PIL image and returns a transformed |
|
version. E.g, ``transforms.RandomCrop``. |
|
target_transform (callable, optional): A function/transform that takes in the target and transforms it. |
|
download (bool, optional): If True, downloads the dataset from the internet and |
|
puts it in root directory. If dataset is already downloaded, it is not |
|
downloaded again. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
root: Union[str, pathlib.Path], |
|
split: str = "train", |
|
transform: Optional[Callable] = None, |
|
target_transform: Optional[Callable] = None, |
|
download: bool = False, |
|
) -> None: |
|
|
|
super().__init__(root, transform=transform, target_transform=target_transform) |
|
|
|
self._split = verify_str_arg(split, "split", ("train", "test")) |
|
self._base_folder = pathlib.Path(root) / "gtsrb" |
|
self._target_folder = ( |
|
self._base_folder / "GTSRB" / ("Training" if self._split == "train" else "Final_Test/Images") |
|
) |
|
|
|
if download: |
|
self.download() |
|
|
|
if not self._check_exists(): |
|
raise RuntimeError("Dataset not found. You can use download=True to download it") |
|
|
|
if self._split == "train": |
|
samples = make_dataset(str(self._target_folder), extensions=(".ppm",)) |
|
else: |
|
with open(self._base_folder / "GT-final_test.csv") as csv_file: |
|
samples = [ |
|
(str(self._target_folder / row["Filename"]), int(row["ClassId"])) |
|
for row in csv.DictReader(csv_file, delimiter=";", skipinitialspace=True) |
|
] |
|
|
|
self._samples = samples |
|
self.transform = transform |
|
self.target_transform = target_transform |
|
|
|
def __len__(self) -> int: |
|
return len(self._samples) |
|
|
|
def __getitem__(self, index: int) -> Tuple[Any, Any]: |
|
|
|
path, target = self._samples[index] |
|
sample = PIL.Image.open(path).convert("RGB") |
|
|
|
if self.transform is not None: |
|
sample = self.transform(sample) |
|
|
|
if self.target_transform is not None: |
|
target = self.target_transform(target) |
|
|
|
return sample, target |
|
|
|
def _check_exists(self) -> bool: |
|
return self._target_folder.is_dir() |
|
|
|
def download(self) -> None: |
|
if self._check_exists(): |
|
return |
|
|
|
base_url = "https://sid.erda.dk/public/archives/daaeac0d7ce1152aea9b61d9f1e19370/" |
|
|
|
if self._split == "train": |
|
download_and_extract_archive( |
|
f"{base_url}GTSRB-Training_fixed.zip", |
|
download_root=str(self._base_folder), |
|
md5="513f3c79a4c5141765e10e952eaa2478", |
|
) |
|
else: |
|
download_and_extract_archive( |
|
f"{base_url}GTSRB_Final_Test_Images.zip", |
|
download_root=str(self._base_folder), |
|
md5="c7e4e6327067d32654124b0fe9e82185", |
|
) |
|
download_and_extract_archive( |
|
f"{base_url}GTSRB_Final_Test_GT.zip", |
|
download_root=str(self._base_folder), |
|
md5="fe31e9c9270bbcd7b84b7f21a9d9d9e5", |
|
) |
|
|