|
from pathlib import Path |
|
from typing import Any, Callable, Optional, Tuple, Union |
|
|
|
from .folder import default_loader |
|
|
|
from .utils import check_integrity, download_and_extract_archive, download_url, verify_str_arg |
|
from .vision import VisionDataset |
|
|
|
|
|
class Flowers102(VisionDataset): |
|
"""`Oxford 102 Flower <https://www.robots.ox.ac.uk/~vgg/data/flowers/102/>`_ Dataset. |
|
|
|
.. warning:: |
|
|
|
This class needs `scipy <https://docs.scipy.org/doc/>`_ to load target files from `.mat` format. |
|
|
|
Oxford 102 Flower is an image classification dataset consisting of 102 flower categories. The |
|
flowers were chosen to be flowers commonly occurring in the United Kingdom. Each class consists of |
|
between 40 and 258 images. |
|
|
|
The images have large scale, pose and light variations. In addition, there are categories that |
|
have large variations within the category, and several very similar categories. |
|
|
|
Args: |
|
root (str or ``pathlib.Path``): Root directory of the dataset. |
|
split (string, optional): The dataset split, supports ``"train"`` (default), ``"val"``, or ``"test"``. |
|
transform (callable, optional): A function/transform that takes in a PIL image or torch.Tensor, depends on the given loader, |
|
and returns a transformed version. E.g, ``transforms.RandomCrop`` |
|
target_transform (callable, optional): A function/transform that takes in the target and transforms it. |
|
download (bool, optional): If true, downloads the dataset from the internet and |
|
puts it in root directory. If dataset is already downloaded, it is not |
|
downloaded again. |
|
loader (callable, optional): A function to load an image given its path. |
|
By default, it uses PIL as its image loader, but users could also pass in |
|
``torchvision.io.decode_image`` for decoding image data into tensors directly. |
|
""" |
|
|
|
_download_url_prefix = "https://www.robots.ox.ac.uk/~vgg/data/flowers/102/" |
|
_file_dict = { |
|
"image": ("102flowers.tgz", "52808999861908f626f3c1f4e79d11fa"), |
|
"label": ("imagelabels.mat", "e0620be6f572b9609742df49c70aed4d"), |
|
"setid": ("setid.mat", "a5357ecc9cb78c4bef273ce3793fc85c"), |
|
} |
|
_splits_map = {"train": "trnid", "val": "valid", "test": "tstid"} |
|
|
|
def __init__( |
|
self, |
|
root: Union[str, Path], |
|
split: str = "train", |
|
transform: Optional[Callable] = None, |
|
target_transform: Optional[Callable] = None, |
|
download: bool = False, |
|
loader: Callable[[Union[str, Path]], Any] = default_loader, |
|
) -> None: |
|
super().__init__(root, transform=transform, target_transform=target_transform) |
|
self._split = verify_str_arg(split, "split", ("train", "val", "test")) |
|
self._base_folder = Path(self.root) / "flowers-102" |
|
self._images_folder = self._base_folder / "jpg" |
|
|
|
if download: |
|
self.download() |
|
|
|
if not self._check_integrity(): |
|
raise RuntimeError("Dataset not found or corrupted. You can use download=True to download it") |
|
|
|
from scipy.io import loadmat |
|
|
|
set_ids = loadmat(self._base_folder / self._file_dict["setid"][0], squeeze_me=True) |
|
image_ids = set_ids[self._splits_map[self._split]].tolist() |
|
|
|
labels = loadmat(self._base_folder / self._file_dict["label"][0], squeeze_me=True) |
|
image_id_to_label = dict(enumerate((labels["labels"] - 1).tolist(), 1)) |
|
|
|
self._labels = [] |
|
self._image_files = [] |
|
for image_id in image_ids: |
|
self._labels.append(image_id_to_label[image_id]) |
|
self._image_files.append(self._images_folder / f"image_{image_id:05d}.jpg") |
|
|
|
self.loader = loader |
|
|
|
def __len__(self) -> int: |
|
return len(self._image_files) |
|
|
|
def __getitem__(self, idx: int) -> Tuple[Any, Any]: |
|
image_file, label = self._image_files[idx], self._labels[idx] |
|
image = self.loader(image_file) |
|
|
|
if self.transform: |
|
image = self.transform(image) |
|
|
|
if self.target_transform: |
|
label = self.target_transform(label) |
|
|
|
return image, label |
|
|
|
def extra_repr(self) -> str: |
|
return f"split={self._split}" |
|
|
|
def _check_integrity(self): |
|
if not (self._images_folder.exists() and self._images_folder.is_dir()): |
|
return False |
|
|
|
for id in ["label", "setid"]: |
|
filename, md5 = self._file_dict[id] |
|
if not check_integrity(str(self._base_folder / filename), md5): |
|
return False |
|
return True |
|
|
|
def download(self): |
|
if self._check_integrity(): |
|
return |
|
download_and_extract_archive( |
|
f"{self._download_url_prefix}{self._file_dict['image'][0]}", |
|
str(self._base_folder), |
|
md5=self._file_dict["image"][1], |
|
) |
|
for id in ["label", "setid"]: |
|
filename, md5 = self._file_dict[id] |
|
download_url(self._download_url_prefix + filename, str(self._base_folder), md5=md5) |
|
|
|
classes = [ |
|
"pink primrose", |
|
"hard-leaved pocket orchid", |
|
"canterbury bells", |
|
"sweet pea", |
|
"english marigold", |
|
"tiger lily", |
|
"moon orchid", |
|
"bird of paradise", |
|
"monkshood", |
|
"globe thistle", |
|
"snapdragon", |
|
"colt's foot", |
|
"king protea", |
|
"spear thistle", |
|
"yellow iris", |
|
"globe-flower", |
|
"purple coneflower", |
|
"peruvian lily", |
|
"balloon flower", |
|
"giant white arum lily", |
|
"fire lily", |
|
"pincushion flower", |
|
"fritillary", |
|
"red ginger", |
|
"grape hyacinth", |
|
"corn poppy", |
|
"prince of wales feathers", |
|
"stemless gentian", |
|
"artichoke", |
|
"sweet william", |
|
"carnation", |
|
"garden phlox", |
|
"love in the mist", |
|
"mexican aster", |
|
"alpine sea holly", |
|
"ruby-lipped cattleya", |
|
"cape flower", |
|
"great masterwort", |
|
"siam tulip", |
|
"lenten rose", |
|
"barbeton daisy", |
|
"daffodil", |
|
"sword lily", |
|
"poinsettia", |
|
"bolero deep blue", |
|
"wallflower", |
|
"marigold", |
|
"buttercup", |
|
"oxeye daisy", |
|
"common dandelion", |
|
"petunia", |
|
"wild pansy", |
|
"primula", |
|
"sunflower", |
|
"pelargonium", |
|
"bishop of llandaff", |
|
"gaura", |
|
"geranium", |
|
"orange dahlia", |
|
"pink-yellow dahlia?", |
|
"cautleya spicata", |
|
"japanese anemone", |
|
"black-eyed susan", |
|
"silverbush", |
|
"californian poppy", |
|
"osteospermum", |
|
"spring crocus", |
|
"bearded iris", |
|
"windflower", |
|
"tree poppy", |
|
"gazania", |
|
"azalea", |
|
"water lily", |
|
"rose", |
|
"thorn apple", |
|
"morning glory", |
|
"passion flower", |
|
"lotus", |
|
"toad lily", |
|
"anthurium", |
|
"frangipani", |
|
"clematis", |
|
"hibiscus", |
|
"columbine", |
|
"desert-rose", |
|
"tree mallow", |
|
"magnolia", |
|
"cyclamen", |
|
"watercress", |
|
"canna lily", |
|
"hippeastrum", |
|
"bee balm", |
|
"ball moss", |
|
"foxglove", |
|
"bougainvillea", |
|
"camellia", |
|
"mallow", |
|
"mexican petunia", |
|
"bromelia", |
|
"blanket flower", |
|
"trumpet creeper", |
|
"blackberry lily", |
|
] |
|
|