|
from __future__ import annotations |
|
|
|
import os |
|
from pathlib import Path |
|
from typing import Any, Callable, Optional, Tuple, Union |
|
|
|
from .folder import default_loader |
|
|
|
from .utils import download_and_extract_archive, verify_str_arg |
|
from .vision import VisionDataset |
|
|
|
|
|
class FGVCAircraft(VisionDataset): |
|
"""`FGVC Aircraft <https://www.robots.ox.ac.uk/~vgg/data/fgvc-aircraft/>`_ Dataset. |
|
|
|
The dataset contains 10,000 images of aircraft, with 100 images for each of 100 |
|
different aircraft model variants, most of which are airplanes. |
|
Aircraft models are organized in a three-levels hierarchy. The three levels, from |
|
finer to coarser, are: |
|
|
|
- ``variant``, e.g. Boeing 737-700. A variant collapses all the models that are visually |
|
indistinguishable into one class. The dataset comprises 100 different variants. |
|
- ``family``, e.g. Boeing 737. The dataset comprises 70 different families. |
|
- ``manufacturer``, e.g. Boeing. The dataset comprises 30 different manufacturers. |
|
|
|
Args: |
|
root (str or ``pathlib.Path``): Root directory of the FGVC Aircraft dataset. |
|
split (string, optional): The dataset split, supports ``train``, ``val``, |
|
``trainval`` and ``test``. |
|
annotation_level (str, optional): The annotation level, supports ``variant``, |
|
``family`` and ``manufacturer``. |
|
transform (callable, optional): A function/transform that takes in a PIL image or torch.Tensor, depends on the given loader, |
|
and returns a transformed version. E.g, ``transforms.RandomCrop`` |
|
target_transform (callable, optional): A function/transform that takes in the |
|
target and transforms it. |
|
download (bool, optional): If True, downloads the dataset from the internet and |
|
puts it in root directory. If dataset is already downloaded, it is not |
|
downloaded again. |
|
loader (callable, optional): A function to load an image given its path. |
|
By default, it uses PIL as its image loader, but users could also pass in |
|
``torchvision.io.decode_image`` for decoding image data into tensors directly. |
|
""" |
|
|
|
_URL = "https://www.robots.ox.ac.uk/~vgg/data/fgvc-aircraft/archives/fgvc-aircraft-2013b.tar.gz" |
|
|
|
def __init__( |
|
self, |
|
root: Union[str, Path], |
|
split: str = "trainval", |
|
annotation_level: str = "variant", |
|
transform: Optional[Callable] = None, |
|
target_transform: Optional[Callable] = None, |
|
download: bool = False, |
|
loader: Callable[[str], Any] = default_loader, |
|
) -> None: |
|
super().__init__(root, transform=transform, target_transform=target_transform) |
|
self._split = verify_str_arg(split, "split", ("train", "val", "trainval", "test")) |
|
self._annotation_level = verify_str_arg( |
|
annotation_level, "annotation_level", ("variant", "family", "manufacturer") |
|
) |
|
|
|
self._data_path = os.path.join(self.root, "fgvc-aircraft-2013b") |
|
if download: |
|
self._download() |
|
|
|
if not self._check_exists(): |
|
raise RuntimeError("Dataset not found. You can use download=True to download it") |
|
|
|
annotation_file = os.path.join( |
|
self._data_path, |
|
"data", |
|
{ |
|
"variant": "variants.txt", |
|
"family": "families.txt", |
|
"manufacturer": "manufacturers.txt", |
|
}[self._annotation_level], |
|
) |
|
with open(annotation_file, "r") as f: |
|
self.classes = [line.strip() for line in f] |
|
|
|
self.class_to_idx = dict(zip(self.classes, range(len(self.classes)))) |
|
|
|
image_data_folder = os.path.join(self._data_path, "data", "images") |
|
labels_file = os.path.join(self._data_path, "data", f"images_{self._annotation_level}_{self._split}.txt") |
|
|
|
self._image_files = [] |
|
self._labels = [] |
|
|
|
with open(labels_file, "r") as f: |
|
for line in f: |
|
image_name, label_name = line.strip().split(" ", 1) |
|
self._image_files.append(os.path.join(image_data_folder, f"{image_name}.jpg")) |
|
self._labels.append(self.class_to_idx[label_name]) |
|
self.loader = loader |
|
|
|
def __len__(self) -> int: |
|
return len(self._image_files) |
|
|
|
def __getitem__(self, idx: int) -> Tuple[Any, Any]: |
|
image_file, label = self._image_files[idx], self._labels[idx] |
|
image = self.loader(image_file) |
|
|
|
if self.transform: |
|
image = self.transform(image) |
|
|
|
if self.target_transform: |
|
label = self.target_transform(label) |
|
|
|
return image, label |
|
|
|
def _download(self) -> None: |
|
""" |
|
Download the FGVC Aircraft dataset archive and extract it under root. |
|
""" |
|
if self._check_exists(): |
|
return |
|
download_and_extract_archive(self._URL, self.root) |
|
|
|
def _check_exists(self) -> bool: |
|
return os.path.exists(self._data_path) and os.path.isdir(self._data_path) |
|
|