|
import csv |
|
import pathlib |
|
from typing import Any, Callable, Optional, Tuple, Union |
|
|
|
import torch |
|
from PIL import Image |
|
|
|
from .utils import check_integrity, verify_str_arg |
|
from .vision import VisionDataset |
|
|
|
|
|
class FER2013(VisionDataset): |
|
"""`FER2013 |
|
<https://www.kaggle.com/c/challenges-in-representation-learning-facial-expression-recognition-challenge>`_ Dataset. |
|
|
|
.. note:: |
|
This dataset can return test labels only if ``fer2013.csv`` OR |
|
``icml_face_data.csv`` are present in ``root/fer2013/``. If only |
|
``train.csv`` and ``test.csv`` are present, the test labels are set to |
|
``None``. |
|
|
|
Args: |
|
root (str or ``pathlib.Path``): Root directory of dataset where directory |
|
``root/fer2013`` exists. This directory may contain either |
|
``fer2013.csv``, ``icml_face_data.csv``, or both ``train.csv`` and |
|
``test.csv``. Precendence is given in that order, i.e. if |
|
``fer2013.csv`` is present then the rest of the files will be |
|
ignored. All these (combinations of) files contain the same data and |
|
are supported for convenience, but only ``fer2013.csv`` and |
|
``icml_face_data.csv`` are able to return non-None test labels. |
|
split (string, optional): The dataset split, supports ``"train"`` (default), or ``"test"``. |
|
transform (callable, optional): A function/transform that takes in a PIL image and returns a transformed |
|
version. E.g, ``transforms.RandomCrop`` |
|
target_transform (callable, optional): A function/transform that takes in the target and transforms it. |
|
""" |
|
|
|
_RESOURCES = { |
|
"train": ("train.csv", "3f0dfb3d3fd99c811a1299cb947e3131"), |
|
"test": ("test.csv", "b02c2298636a634e8c2faabbf3ea9a23"), |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"fer": ("fer2013.csv", "f8428a1edbd21e88f42c73edd2a14f95"), |
|
"icml": ("icml_face_data.csv", "b114b9e04e6949e5fe8b6a98b3892b1d"), |
|
} |
|
|
|
def __init__( |
|
self, |
|
root: Union[str, pathlib.Path], |
|
split: str = "train", |
|
transform: Optional[Callable] = None, |
|
target_transform: Optional[Callable] = None, |
|
) -> None: |
|
self._split = verify_str_arg(split, "split", ("train", "test")) |
|
super().__init__(root, transform=transform, target_transform=target_transform) |
|
|
|
base_folder = pathlib.Path(self.root) / "fer2013" |
|
use_fer_file = (base_folder / self._RESOURCES["fer"][0]).exists() |
|
use_icml_file = not use_fer_file and (base_folder / self._RESOURCES["icml"][0]).exists() |
|
file_name, md5 = self._RESOURCES["fer" if use_fer_file else "icml" if use_icml_file else self._split] |
|
data_file = base_folder / file_name |
|
if not check_integrity(str(data_file), md5=md5): |
|
raise RuntimeError( |
|
f"{file_name} not found in {base_folder} or corrupted. " |
|
f"You can download it from " |
|
f"https://www.kaggle.com/c/challenges-in-representation-learning-facial-expression-recognition-challenge" |
|
) |
|
|
|
pixels_key = " pixels" if use_icml_file else "pixels" |
|
usage_key = " Usage" if use_icml_file else "Usage" |
|
|
|
def get_img(row): |
|
return torch.tensor([int(idx) for idx in row[pixels_key].split()], dtype=torch.uint8).reshape(48, 48) |
|
|
|
def get_label(row): |
|
if use_fer_file or use_icml_file or self._split == "train": |
|
return int(row["emotion"]) |
|
else: |
|
return None |
|
|
|
with open(data_file, "r", newline="") as file: |
|
rows = (row for row in csv.DictReader(file)) |
|
|
|
if use_fer_file or use_icml_file: |
|
valid_keys = ("Training",) if self._split == "train" else ("PublicTest", "PrivateTest") |
|
rows = (row for row in rows if row[usage_key] in valid_keys) |
|
|
|
self._samples = [(get_img(row), get_label(row)) for row in rows] |
|
|
|
def __len__(self) -> int: |
|
return len(self._samples) |
|
|
|
def __getitem__(self, idx: int) -> Tuple[Any, Any]: |
|
image_tensor, target = self._samples[idx] |
|
image = Image.fromarray(image_tensor.numpy()) |
|
|
|
if self.transform is not None: |
|
image = self.transform(image) |
|
|
|
if self.target_transform is not None: |
|
target = self.target_transform(target) |
|
|
|
return image, target |
|
|
|
def extra_repr(self) -> str: |
|
return f"split={self._split}" |
|
|