|
from typing import Any, Callable, Optional, Tuple |
|
|
|
import torch |
|
|
|
from .. import transforms |
|
from .vision import VisionDataset |
|
|
|
|
|
class FakeData(VisionDataset): |
|
"""A fake dataset that returns randomly generated images and returns them as PIL images |
|
|
|
Args: |
|
size (int, optional): Size of the dataset. Default: 1000 images |
|
image_size(tuple, optional): Size if the returned images. Default: (3, 224, 224) |
|
num_classes(int, optional): Number of classes in the dataset. Default: 10 |
|
transform (callable, optional): A function/transform that takes in a PIL image |
|
and returns a transformed version. E.g, ``transforms.RandomCrop`` |
|
target_transform (callable, optional): A function/transform that takes in the |
|
target and transforms it. |
|
random_offset (int): Offsets the index-based random seed used to |
|
generate each image. Default: 0 |
|
|
|
""" |
|
|
|
def __init__( |
|
self, |
|
size: int = 1000, |
|
image_size: Tuple[int, int, int] = (3, 224, 224), |
|
num_classes: int = 10, |
|
transform: Optional[Callable] = None, |
|
target_transform: Optional[Callable] = None, |
|
random_offset: int = 0, |
|
) -> None: |
|
super().__init__(transform=transform, target_transform=target_transform) |
|
self.size = size |
|
self.num_classes = num_classes |
|
self.image_size = image_size |
|
self.random_offset = random_offset |
|
|
|
def __getitem__(self, index: int) -> Tuple[Any, Any]: |
|
""" |
|
Args: |
|
index (int): Index |
|
|
|
Returns: |
|
tuple: (image, target) where target is class_index of the target class. |
|
""" |
|
|
|
if index >= len(self): |
|
raise IndexError(f"{self.__class__.__name__} index out of range") |
|
rng_state = torch.get_rng_state() |
|
torch.manual_seed(index + self.random_offset) |
|
img = torch.randn(*self.image_size) |
|
target = torch.randint(0, self.num_classes, size=(1,), dtype=torch.long)[0] |
|
torch.set_rng_state(rng_state) |
|
|
|
|
|
img = transforms.ToPILImage()(img) |
|
if self.transform is not None: |
|
img = self.transform(img) |
|
if self.target_transform is not None: |
|
target = self.target_transform(target) |
|
|
|
return img, target.item() |
|
|
|
def __len__(self) -> int: |
|
return self.size |
|
|