|
from pathlib import Path |
|
from typing import Any, Callable, Optional, Union |
|
|
|
from .folder import default_loader, ImageFolder |
|
from .utils import download_and_extract_archive, verify_str_arg |
|
|
|
|
|
class Country211(ImageFolder): |
|
"""`The Country211 Data Set <https://github.com/openai/CLIP/blob/main/data/country211.md>`_ from OpenAI. |
|
|
|
This dataset was built by filtering the images from the YFCC100m dataset |
|
that have GPS coordinate corresponding to a ISO-3166 country code. The |
|
dataset is balanced by sampling 150 train images, 50 validation images, and |
|
100 test images for each country. |
|
|
|
Args: |
|
root (str or ``pathlib.Path``): Root directory of the dataset. |
|
split (string, optional): The dataset split, supports ``"train"`` (default), ``"valid"`` and ``"test"``. |
|
transform (callable, optional): A function/transform that takes in a PIL image or torch.Tensor, depends on the given loader, |
|
and returns a transformed version. E.g, ``transforms.RandomCrop`` |
|
target_transform (callable, optional): A function/transform that takes in the target and transforms it. |
|
download (bool, optional): If True, downloads the dataset from the internet and puts it into |
|
``root/country211/``. If dataset is already downloaded, it is not downloaded again. |
|
loader (callable, optional): A function to load an image given its path. |
|
By default, it uses PIL as its image loader, but users could also pass in |
|
``torchvision.io.decode_image`` for decoding image data into tensors directly. |
|
""" |
|
|
|
_URL = "https://openaipublic.azureedge.net/clip/data/country211.tgz" |
|
_MD5 = "84988d7644798601126c29e9877aab6a" |
|
|
|
def __init__( |
|
self, |
|
root: Union[str, Path], |
|
split: str = "train", |
|
transform: Optional[Callable] = None, |
|
target_transform: Optional[Callable] = None, |
|
download: bool = False, |
|
loader: Callable[[str], Any] = default_loader, |
|
) -> None: |
|
self._split = verify_str_arg(split, "split", ("train", "valid", "test")) |
|
|
|
root = Path(root).expanduser() |
|
self.root = str(root) |
|
self._base_folder = root / "country211" |
|
|
|
if download: |
|
self._download() |
|
|
|
if not self._check_exists(): |
|
raise RuntimeError("Dataset not found. You can use download=True to download it") |
|
|
|
super().__init__( |
|
str(self._base_folder / self._split), |
|
transform=transform, |
|
target_transform=target_transform, |
|
loader=loader, |
|
) |
|
self.root = str(root) |
|
|
|
def _check_exists(self) -> bool: |
|
return self._base_folder.exists() and self._base_folder.is_dir() |
|
|
|
def _download(self) -> None: |
|
if self._check_exists(): |
|
return |
|
download_and_extract_archive(self._URL, download_root=self.root, md5=self._MD5) |
|
|