|
import os |
|
import os.path |
|
from pathlib import Path |
|
from typing import Any, Callable, List, Optional, Tuple, Union |
|
|
|
from PIL import Image |
|
|
|
from .utils import download_and_extract_archive, verify_str_arg |
|
from .vision import VisionDataset |
|
|
|
|
|
class Caltech101(VisionDataset): |
|
"""`Caltech 101 <https://data.caltech.edu/records/20086>`_ Dataset. |
|
|
|
.. warning:: |
|
|
|
This class needs `scipy <https://docs.scipy.org/doc/>`_ to load target files from `.mat` format. |
|
|
|
Args: |
|
root (str or ``pathlib.Path``): Root directory of dataset where directory |
|
``caltech101`` exists or will be saved to if download is set to True. |
|
target_type (string or list, optional): Type of target to use, ``category`` or |
|
``annotation``. Can also be a list to output a tuple with all specified |
|
target types. ``category`` represents the target class, and |
|
``annotation`` is a list of points from a hand-generated outline. |
|
Defaults to ``category``. |
|
transform (callable, optional): A function/transform that takes in a PIL image |
|
and returns a transformed version. E.g, ``transforms.RandomCrop`` |
|
target_transform (callable, optional): A function/transform that takes in the |
|
target and transforms it. |
|
download (bool, optional): If true, downloads the dataset from the internet and |
|
puts it in root directory. If dataset is already downloaded, it is not |
|
downloaded again. |
|
|
|
.. warning:: |
|
|
|
To download the dataset `gdown <https://github.com/wkentaro/gdown>`_ is required. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
root: Union[str, Path], |
|
target_type: Union[List[str], str] = "category", |
|
transform: Optional[Callable] = None, |
|
target_transform: Optional[Callable] = None, |
|
download: bool = False, |
|
) -> None: |
|
super().__init__(os.path.join(root, "caltech101"), transform=transform, target_transform=target_transform) |
|
os.makedirs(self.root, exist_ok=True) |
|
if isinstance(target_type, str): |
|
target_type = [target_type] |
|
self.target_type = [verify_str_arg(t, "target_type", ("category", "annotation")) for t in target_type] |
|
|
|
if download: |
|
self.download() |
|
|
|
if not self._check_integrity(): |
|
raise RuntimeError("Dataset not found or corrupted. You can use download=True to download it") |
|
|
|
self.categories = sorted(os.listdir(os.path.join(self.root, "101_ObjectCategories"))) |
|
self.categories.remove("BACKGROUND_Google") |
|
|
|
|
|
|
|
|
|
name_map = { |
|
"Faces": "Faces_2", |
|
"Faces_easy": "Faces_3", |
|
"Motorbikes": "Motorbikes_16", |
|
"airplanes": "Airplanes_Side_2", |
|
} |
|
self.annotation_categories = list(map(lambda x: name_map[x] if x in name_map else x, self.categories)) |
|
|
|
self.index: List[int] = [] |
|
self.y = [] |
|
for (i, c) in enumerate(self.categories): |
|
n = len(os.listdir(os.path.join(self.root, "101_ObjectCategories", c))) |
|
self.index.extend(range(1, n + 1)) |
|
self.y.extend(n * [i]) |
|
|
|
def __getitem__(self, index: int) -> Tuple[Any, Any]: |
|
""" |
|
Args: |
|
index (int): Index |
|
|
|
Returns: |
|
tuple: (image, target) where the type of target specified by target_type. |
|
""" |
|
import scipy.io |
|
|
|
img = Image.open( |
|
os.path.join( |
|
self.root, |
|
"101_ObjectCategories", |
|
self.categories[self.y[index]], |
|
f"image_{self.index[index]:04d}.jpg", |
|
) |
|
) |
|
|
|
target: Any = [] |
|
for t in self.target_type: |
|
if t == "category": |
|
target.append(self.y[index]) |
|
elif t == "annotation": |
|
data = scipy.io.loadmat( |
|
os.path.join( |
|
self.root, |
|
"Annotations", |
|
self.annotation_categories[self.y[index]], |
|
f"annotation_{self.index[index]:04d}.mat", |
|
) |
|
) |
|
target.append(data["obj_contour"]) |
|
target = tuple(target) if len(target) > 1 else target[0] |
|
|
|
if self.transform is not None: |
|
img = self.transform(img) |
|
|
|
if self.target_transform is not None: |
|
target = self.target_transform(target) |
|
|
|
return img, target |
|
|
|
def _check_integrity(self) -> bool: |
|
|
|
return os.path.exists(os.path.join(self.root, "101_ObjectCategories")) |
|
|
|
def __len__(self) -> int: |
|
return len(self.index) |
|
|
|
def download(self) -> None: |
|
if self._check_integrity(): |
|
return |
|
|
|
download_and_extract_archive( |
|
"https://drive.google.com/file/d/137RyRjvTBkBiIfeYBNZBtViDHQ6_Ewsp", |
|
self.root, |
|
filename="101_ObjectCategories.tar.gz", |
|
md5="b224c7392d521a49829488ab0f1120d9", |
|
) |
|
download_and_extract_archive( |
|
"https://drive.google.com/file/d/175kQy3UsZ0wUEHZjqkUDdNVssr7bgh_m", |
|
self.root, |
|
filename="Annotations.tar", |
|
md5="6f83eeb1f24d99cab4eb377263132c91", |
|
) |
|
|
|
def extra_repr(self) -> str: |
|
return "Target type: {target_type}".format(**self.__dict__) |
|
|
|
|
|
class Caltech256(VisionDataset): |
|
"""`Caltech 256 <https://data.caltech.edu/records/20087>`_ Dataset. |
|
|
|
Args: |
|
root (str or ``pathlib.Path``): Root directory of dataset where directory |
|
``caltech256`` exists or will be saved to if download is set to True. |
|
transform (callable, optional): A function/transform that takes in a PIL image |
|
and returns a transformed version. E.g, ``transforms.RandomCrop`` |
|
target_transform (callable, optional): A function/transform that takes in the |
|
target and transforms it. |
|
download (bool, optional): If true, downloads the dataset from the internet and |
|
puts it in root directory. If dataset is already downloaded, it is not |
|
downloaded again. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
root: str, |
|
transform: Optional[Callable] = None, |
|
target_transform: Optional[Callable] = None, |
|
download: bool = False, |
|
) -> None: |
|
super().__init__(os.path.join(root, "caltech256"), transform=transform, target_transform=target_transform) |
|
os.makedirs(self.root, exist_ok=True) |
|
|
|
if download: |
|
self.download() |
|
|
|
if not self._check_integrity(): |
|
raise RuntimeError("Dataset not found or corrupted. You can use download=True to download it") |
|
|
|
self.categories = sorted(os.listdir(os.path.join(self.root, "256_ObjectCategories"))) |
|
self.index: List[int] = [] |
|
self.y = [] |
|
for (i, c) in enumerate(self.categories): |
|
n = len( |
|
[ |
|
item |
|
for item in os.listdir(os.path.join(self.root, "256_ObjectCategories", c)) |
|
if item.endswith(".jpg") |
|
] |
|
) |
|
self.index.extend(range(1, n + 1)) |
|
self.y.extend(n * [i]) |
|
|
|
def __getitem__(self, index: int) -> Tuple[Any, Any]: |
|
""" |
|
Args: |
|
index (int): Index |
|
|
|
Returns: |
|
tuple: (image, target) where target is index of the target class. |
|
""" |
|
img = Image.open( |
|
os.path.join( |
|
self.root, |
|
"256_ObjectCategories", |
|
self.categories[self.y[index]], |
|
f"{self.y[index] + 1:03d}_{self.index[index]:04d}.jpg", |
|
) |
|
) |
|
|
|
target = self.y[index] |
|
|
|
if self.transform is not None: |
|
img = self.transform(img) |
|
|
|
if self.target_transform is not None: |
|
target = self.target_transform(target) |
|
|
|
return img, target |
|
|
|
def _check_integrity(self) -> bool: |
|
|
|
return os.path.exists(os.path.join(self.root, "256_ObjectCategories")) |
|
|
|
def __len__(self) -> int: |
|
return len(self.index) |
|
|
|
def download(self) -> None: |
|
if self._check_integrity(): |
|
return |
|
|
|
download_and_extract_archive( |
|
"https://drive.google.com/file/d/1r6o0pSROcV1_VwT4oSjA2FBUSCWGuxLK", |
|
self.root, |
|
filename="256_ObjectCategories.tar", |
|
md5="67b4f42ca05d46448c6bb8ecd2220f6d", |
|
) |
|
|