|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from collections.abc import Sequence |
|
from typing import Any, Callable, List, Optional, Union |
|
|
|
import torch |
|
from torch import Tensor |
|
from torch.nn import Module |
|
|
|
from torchmetrics.functional.text.bert import bert_score |
|
from torchmetrics.functional.text.helper_embedding_metric import _preprocess_text |
|
from torchmetrics.metric import Metric |
|
from torchmetrics.utilities import rank_zero_warn |
|
from torchmetrics.utilities.checks import _SKIP_SLOW_DOCTEST, _try_proceed_with_timeout |
|
from torchmetrics.utilities.data import dim_zero_cat |
|
from torchmetrics.utilities.imports import _MATPLOTLIB_AVAILABLE, _TRANSFORMERS_GREATER_EQUAL_4_4 |
|
from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE |
|
|
|
if not _MATPLOTLIB_AVAILABLE: |
|
__doctest_skip__ = ["BERTScore.plot"] |
|
|
|
|
|
_DEFAULT_MODEL: str = "roberta-large" |
|
|
|
if _SKIP_SLOW_DOCTEST and _TRANSFORMERS_GREATER_EQUAL_4_4: |
|
from transformers import AutoModel, AutoTokenizer |
|
|
|
def _download_model_for_bert_score() -> None: |
|
"""Download intensive operations.""" |
|
AutoTokenizer.from_pretrained(_DEFAULT_MODEL, resume_download=True) |
|
AutoModel.from_pretrained(_DEFAULT_MODEL, resume_download=True) |
|
|
|
if not _try_proceed_with_timeout(_download_model_for_bert_score): |
|
__doctest_skip__ = ["BERTScore", "BERTScore.plot"] |
|
else: |
|
__doctest_skip__ = ["BERTScore", "BERTScore.plot"] |
|
|
|
|
|
def _get_input_dict(input_ids: List[Tensor], attention_mask: List[Tensor]) -> dict[str, Tensor]: |
|
"""Create an input dictionary of ``input_ids`` and ``attention_mask`` for BERTScore calculation.""" |
|
return {"input_ids": torch.cat(input_ids), "attention_mask": torch.cat(attention_mask)} |
|
|
|
|
|
class BERTScore(Metric): |
|
"""`Bert_score Evaluating Text Generation`_ for measuring text similarity. |
|
|
|
BERT leverages the pre-trained contextual embeddings from BERT and matches words in candidate and reference |
|
sentences by cosine similarity. It has been shown to correlate with human judgment on sentence-level and |
|
system-level evaluation. Moreover, BERTScore computes precision, recall, and F1 measure, which can be useful for |
|
evaluating different language generation tasks. This implementation follows the original implementation from |
|
`BERT_score`_. |
|
|
|
As input to ``forward`` and ``update`` the metric accepts the following input: |
|
|
|
- ``preds`` (:class:`~List`): An iterable of predicted sentences |
|
- ``target`` (:class:`~List`): An iterable of reference sentences |
|
|
|
As output of ``forward`` and ``compute`` the metric returns the following output: |
|
|
|
- ``score`` (:class:`~Dict`): A dictionary containing the keys ``precision``, ``recall`` and ``f1`` with |
|
corresponding values |
|
|
|
Args: |
|
preds: An iterable of predicted sentences. |
|
target: An iterable of target sentences. |
|
model_type: A name or a model path used to load ``transformers`` pretrained model. |
|
num_layers: A layer of representation to use. |
|
all_layers: |
|
An indication of whether the representation from all model's layers should be used. |
|
If ``all_layers=True``, the argument ``num_layers`` is ignored. |
|
model: A user's own model. Must be of `torch.nn.Module` instance. |
|
user_tokenizer: |
|
A user's own tokenizer used with the own model. This must be an instance with the ``__call__`` method. |
|
This method must take an iterable of sentences (`List[str]`) and must return a python dictionary |
|
containing `"input_ids"` and `"attention_mask"` represented by :class:`~torch.Tensor`. |
|
It is up to the user's model of whether `"input_ids"` is a :class:`~torch.Tensor` of input ids or embedding |
|
vectors. This tokenizer must prepend an equivalent of ``[CLS]`` token and append an equivalent of ``[SEP]`` |
|
token as ``transformers`` tokenizer does. |
|
user_forward_fn: |
|
A user's own forward function used in a combination with ``user_model``. This function must take |
|
``user_model`` and a python dictionary of containing ``"input_ids"`` and ``"attention_mask"`` represented |
|
by :class:`~torch.Tensor` as an input and return the model's output represented by the single |
|
:class:`~torch.Tensor`. |
|
verbose: An indication of whether a progress bar to be displayed during the embeddings' calculation. |
|
idf: An indication whether normalization using inverse document frequencies should be used. |
|
device: A device to be used for calculation. |
|
max_length: A maximum length of input sequences. Sequences longer than ``max_length`` are to be trimmed. |
|
batch_size: A batch size used for model processing. |
|
num_threads: A number of threads to use for a dataloader. |
|
return_hash: An indication of whether the correspodning ``hash_code`` should be returned. |
|
lang: A language of input sentences. |
|
rescale_with_baseline: |
|
An indication of whether bertscore should be rescaled with a pre-computed baseline. |
|
When a pretrained model from ``transformers`` model is used, the corresponding baseline is downloaded |
|
from the original ``bert-score`` package from `BERT_score`_ if available. |
|
In other cases, please specify a path to the baseline csv/tsv file, which must follow the formatting |
|
of the files from `BERT_score`_. |
|
baseline_path: A path to the user's own local csv/tsv file with the baseline scale. |
|
baseline_url: A url path to the user's own csv/tsv file with the baseline scale. |
|
truncation: An indication of whether the input sequences should be truncated to the ``max_length``. |
|
kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info. |
|
|
|
Example: |
|
>>> from pprint import pprint |
|
>>> from torchmetrics.text.bert import BERTScore |
|
>>> preds = ["hello there", "general kenobi"] |
|
>>> target = ["hello there", "master kenobi"] |
|
>>> bertscore = BERTScore() |
|
>>> pprint(bertscore(preds, target)) |
|
{'f1': tensor([1.0000, 0.9961]), 'precision': tensor([1.0000, 0.9961]), 'recall': tensor([1.0000, 0.9961])} |
|
|
|
""" |
|
|
|
is_differentiable: bool = False |
|
higher_is_better: bool = True |
|
full_state_update: bool = False |
|
plot_lower_bound: float = 0.0 |
|
plot_upper_bound: float = 1.0 |
|
|
|
preds_input_ids: List[Tensor] |
|
preds_attention_mask: List[Tensor] |
|
target_input_ids: List[Tensor] |
|
target_attention_mask: List[Tensor] |
|
|
|
def __init__( |
|
self, |
|
model_name_or_path: Optional[str] = None, |
|
num_layers: Optional[int] = None, |
|
all_layers: bool = False, |
|
model: Optional[Module] = None, |
|
user_tokenizer: Optional[Any] = None, |
|
user_forward_fn: Optional[Callable[[Module, dict[str, Tensor]], Tensor]] = None, |
|
verbose: bool = False, |
|
idf: bool = False, |
|
device: Optional[Union[str, torch.device]] = None, |
|
max_length: int = 512, |
|
batch_size: int = 64, |
|
num_threads: int = 0, |
|
return_hash: bool = False, |
|
lang: str = "en", |
|
rescale_with_baseline: bool = False, |
|
baseline_path: Optional[str] = None, |
|
baseline_url: Optional[str] = None, |
|
truncation: bool = False, |
|
**kwargs: Any, |
|
) -> None: |
|
super().__init__(**kwargs) |
|
self.model_name_or_path = model_name_or_path or _DEFAULT_MODEL |
|
self.num_layers = num_layers |
|
self.all_layers = all_layers |
|
self.model = model |
|
self.user_forward_fn = user_forward_fn |
|
self.verbose = verbose |
|
self.idf = idf |
|
self.embedding_device = device |
|
self.max_length = max_length |
|
self.batch_size = batch_size |
|
self.num_threads = num_threads |
|
self.return_hash = return_hash |
|
self.lang = lang |
|
self.rescale_with_baseline = rescale_with_baseline |
|
self.baseline_path = baseline_path |
|
self.baseline_url = baseline_url |
|
self.truncation = truncation |
|
|
|
if user_tokenizer: |
|
self.tokenizer = user_tokenizer |
|
self.user_tokenizer = True |
|
else: |
|
if not _TRANSFORMERS_GREATER_EQUAL_4_4: |
|
raise ModuleNotFoundError( |
|
"`BERTScore` metric with default tokenizers requires `transformers` package be installed." |
|
" Either install with `pip install transformers>=4.4` or `pip install torchmetrics[text]`." |
|
) |
|
from transformers import AutoTokenizer |
|
|
|
if model_name_or_path is None: |
|
rank_zero_warn( |
|
"The argument `model_name_or_path` was not specified while it is required when the default" |
|
" `transformers` model is used." |
|
f" It will use the default recommended model - {_DEFAULT_MODEL!r}." |
|
) |
|
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name_or_path) |
|
self.user_tokenizer = False |
|
|
|
self.add_state("preds_input_ids", [], dist_reduce_fx="cat") |
|
self.add_state("preds_attention_mask", [], dist_reduce_fx="cat") |
|
self.add_state("target_input_ids", [], dist_reduce_fx="cat") |
|
self.add_state("target_attention_mask", [], dist_reduce_fx="cat") |
|
|
|
def update(self, preds: Union[str, Sequence[str]], target: Union[str, Sequence[str]]) -> None: |
|
"""Store predictions/references for computing BERT scores. |
|
|
|
It is necessary to store sentences in a tokenized form to ensure the DDP mode working. |
|
|
|
""" |
|
if not isinstance(preds, list): |
|
preds = list(preds) |
|
if not isinstance(target, list): |
|
target = list(target) |
|
|
|
preds_dict, _ = _preprocess_text( |
|
preds, |
|
self.tokenizer, |
|
self.max_length, |
|
truncation=self.truncation, |
|
sort_according_length=False, |
|
own_tokenizer=self.user_tokenizer, |
|
) |
|
target_dict, _ = _preprocess_text( |
|
target, |
|
self.tokenizer, |
|
self.max_length, |
|
truncation=self.truncation, |
|
sort_according_length=False, |
|
own_tokenizer=self.user_tokenizer, |
|
) |
|
|
|
self.preds_input_ids.append(preds_dict["input_ids"]) |
|
self.preds_attention_mask.append(preds_dict["attention_mask"]) |
|
self.target_input_ids.append(target_dict["input_ids"]) |
|
self.target_attention_mask.append(target_dict["attention_mask"]) |
|
|
|
def compute(self) -> dict[str, Union[Tensor, list[float], str]]: |
|
"""Calculate BERT scores.""" |
|
preds = { |
|
"input_ids": dim_zero_cat(self.preds_input_ids), |
|
"attention_mask": dim_zero_cat(self.preds_attention_mask), |
|
} |
|
target = { |
|
"input_ids": dim_zero_cat(self.target_input_ids), |
|
"attention_mask": dim_zero_cat(self.target_attention_mask), |
|
} |
|
return bert_score( |
|
preds=preds, |
|
target=target, |
|
model_name_or_path=self.model_name_or_path, |
|
num_layers=self.num_layers, |
|
all_layers=self.all_layers, |
|
model=self.model, |
|
user_tokenizer=self.tokenizer if self.user_tokenizer else None, |
|
user_forward_fn=self.user_forward_fn, |
|
verbose=self.verbose, |
|
idf=self.idf, |
|
device=self.embedding_device, |
|
max_length=self.max_length, |
|
batch_size=self.batch_size, |
|
num_threads=self.num_threads, |
|
return_hash=self.return_hash, |
|
lang=self.lang, |
|
rescale_with_baseline=self.rescale_with_baseline, |
|
baseline_path=self.baseline_path, |
|
baseline_url=self.baseline_url, |
|
) |
|
|
|
def plot( |
|
self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None |
|
) -> _PLOT_OUT_TYPE: |
|
"""Plot a single or multiple values from the metric. |
|
|
|
Args: |
|
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results. |
|
If no value is provided, will automatically call `metric.compute` and plot that result. |
|
ax: An matplotlib axis object. If provided will add plot to that axis |
|
|
|
Returns: |
|
Figure and Axes object |
|
|
|
Raises: |
|
ModuleNotFoundError: |
|
If `matplotlib` is not installed |
|
|
|
.. plot:: |
|
:scale: 75 |
|
|
|
>>> # Example plotting a single value |
|
>>> from torchmetrics.text.bert import BERTScore |
|
>>> preds = ["hello there", "general kenobi"] |
|
>>> target = ["hello there", "master kenobi"] |
|
>>> metric = BERTScore() |
|
>>> metric.update(preds, target) |
|
>>> fig_, ax_ = metric.plot() |
|
|
|
.. plot:: |
|
:scale: 75 |
|
|
|
>>> # Example plotting multiple values |
|
>>> from torch import tensor |
|
>>> from torchmetrics.text.bert import BERTScore |
|
>>> preds = ["hello there", "general kenobi"] |
|
>>> target = ["hello there", "master kenobi"] |
|
>>> metric = BERTScore() |
|
>>> values = [] |
|
>>> for _ in range(10): |
|
... val = metric(preds, target) |
|
... val = {k: tensor(v).mean() for k,v in val.items()} # convert into single value per key |
|
... values.append(val) |
|
>>> fig_, ax_ = metric.plot(values) |
|
|
|
""" |
|
if val is None: |
|
val = self.compute() |
|
val = {k: torch.tensor(v).mean() for k, v in val.items()} |
|
return self._plot(val, ax) |
|
|