jamtur01's picture
Upload folder using huggingface_hub
9c6594c verified
# Copyright The Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections.abc import Sequence
from typing import Any, Optional, Union
import torch
from torch import Tensor
from typing_extensions import Literal
from torchmetrics.functional.segmentation.generalized_dice import (
_generalized_dice_compute,
_generalized_dice_update,
_generalized_dice_validate_args,
)
from torchmetrics.metric import Metric
from torchmetrics.utilities.imports import _MATPLOTLIB_AVAILABLE
from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE
if not _MATPLOTLIB_AVAILABLE:
__doctest_skip__ = ["GeneralizedDiceScore.plot"]
class GeneralizedDiceScore(Metric):
r"""Compute `Generalized Dice Score`_.
The metric can be used to evaluate the performance of image segmentation models. The Generalized Dice Score is
defined as:
.. math::
GDS = \frac{2 \\sum_{i=1}^{N} w_i \\sum_{j} t_{ij} p_{ij}}{
\\sum_{i=1}^{N} w_i \\sum_{j} t_{ij} + \\sum_{i=1}^{N} w_i \\sum_{j} p_{ij}}
where :math:`N` is the number of classes, :math:`t_{ij}` is the target tensor, :math:`p_{ij}` is the prediction
tensor, and :math:`w_i` is the weight for class :math:`i`. The weight can be computed in three different ways:
- `square`: :math:`w_i = 1 / (\\sum_{j} t_{ij})^2`
- `simple`: :math:`w_i = 1 / \\sum_{j} t_{ij}`
- `linear`: :math:`w_i = 1`
Note that the generalized dice loss can be computed as one minus the generalized dice score.
As input to ``forward`` and ``update`` the metric accepts the following input:
- ``preds`` (:class:`~torch.Tensor`): An one-hot boolean tensor of shape ``(N, C, ...)`` with ``N`` being
the number of samples and ``C`` the number of classes. Alternatively, an integer tensor of shape ``(N, ...)``
can be provided, where the integer values correspond to the class index. The input type can be controlled
with the ``input_format`` argument.
- ``target`` (:class:`~torch.Tensor`): An one-hot boolean tensor of shape ``(N, C, ...)`` with ``N`` being
the number of samples and ``C`` the number of classes. Alternatively, an integer tensor of shape ``(N, ...)``
can be provided, where the integer values correspond to the class index. The input type can be controlled
with the ``input_format`` argument.
As output to ``forward`` and ``compute`` the metric returns the following output:
- ``gds`` (:class:`~torch.Tensor`): The generalized dice score. If ``per_class`` is set to ``True``, the output
will be a tensor of shape ``(C,)`` with the generalized dice score for each class. If ``per_class`` is
set to ``False``, the output will be a scalar tensor.
Args:
num_classes: The number of classes in the segmentation problem.
include_background: Whether to include the background class in the computation
per_class: Whether to compute the metric for each class separately.
weight_type: The type of weight to apply to each class. Can be one of ``"square"``, ``"simple"``, or
``"linear"``.
input_format: What kind of input the function receives. Choose between ``"one-hot"`` for one-hot encoded tensors
or ``"index"`` for index tensors
kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info.
Raises:
ValueError:
If ``num_classes`` is not a positive integer
ValueError:
If ``include_background`` is not a boolean
ValueError:
If ``per_class`` is not a boolean
ValueError:
If ``weight_type`` is not one of ``"square"``, ``"simple"``, or ``"linear"``
ValueError:
If ``input_format`` is not one of ``"one-hot"`` or ``"index"``
Example:
>>> from torch import randint
>>> from torchmetrics.segmentation import GeneralizedDiceScore
>>> gds = GeneralizedDiceScore(num_classes=3)
>>> preds = randint(0, 2, (10, 3, 128, 128))
>>> target = randint(0, 2, (10, 3, 128, 128))
>>> gds(preds, target)
tensor(0.4992)
>>> gds = GeneralizedDiceScore(num_classes=3, per_class=True)
>>> gds(preds, target)
tensor([0.5001, 0.4993, 0.4982])
>>> gds = GeneralizedDiceScore(num_classes=3, per_class=True, include_background=False)
>>> gds(preds, target)
tensor([0.4993, 0.4982])
"""
score: Tensor
samples: Tensor
full_state_update: bool = False
is_differentiable: bool = False
higher_is_better: bool = True
plot_lower_bound: float = 0.0
plot_upper_bound: float = 1.0
def __init__(
self,
num_classes: int,
include_background: bool = True,
per_class: bool = False,
weight_type: Literal["square", "simple", "linear"] = "square",
input_format: Literal["one-hot", "index"] = "one-hot",
**kwargs: Any,
) -> None:
super().__init__(**kwargs)
_generalized_dice_validate_args(num_classes, include_background, per_class, weight_type, input_format)
self.num_classes = num_classes
self.include_background = include_background
self.per_class = per_class
self.weight_type = weight_type
self.input_format = input_format
num_classes = num_classes - 1 if not include_background else num_classes
self.add_state("score", default=torch.zeros(num_classes if per_class else 1), dist_reduce_fx="sum")
self.add_state("samples", default=torch.zeros(1), dist_reduce_fx="sum")
def update(self, preds: Tensor, target: Tensor) -> None:
"""Update the state with new data."""
numerator, denominator = _generalized_dice_update(
preds, target, self.num_classes, self.include_background, self.weight_type, self.input_format
)
self.score += _generalized_dice_compute(numerator, denominator, self.per_class).sum(dim=0)
self.samples += preds.shape[0]
def compute(self) -> Tensor:
"""Compute the final generalized dice score."""
return self.score / self.samples
def plot(self, val: Union[Tensor, Sequence[Tensor], None] = None, ax: Optional[_AX_TYPE] = None) -> _PLOT_OUT_TYPE:
"""Plot a single or multiple values from the metric.
Args:
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results.
If no value is provided, will automatically call `metric.compute` and plot that result.
ax: An matplotlib axis object. If provided will add plot to that axis
Returns:
Figure and Axes object
Raises:
ModuleNotFoundError:
If `matplotlib` is not installed
.. plot::
:scale: 75
>>> # Example plotting a single value
>>> import torch
>>> from torchmetrics.segmentation import GeneralizedDiceScore
>>> metric = GeneralizedDiceScore(num_classes=3)
>>> metric.update(torch.randint(0, 2, (10, 3, 128, 128)), torch.randint(0, 2, (10, 3, 128, 128)))
>>> fig_, ax_ = metric.plot()
.. plot::
:scale: 75
>>> # Example plotting multiple values
>>> import torch
>>> from torchmetrics.segmentation import GeneralizedDiceScore
>>> metric = GeneralizedDiceScore(num_classes=3)
>>> values = [ ]
>>> for _ in range(10):
... values.append(
... metric(torch.randint(0, 2, (10, 3, 128, 128)), torch.randint(0, 2, (10, 3, 128, 128)))
... )
>>> fig_, ax_ = metric.plot(values)
"""
return self._plot(val, ax)