|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from collections.abc import Sequence |
|
from typing import Any, Optional, Union |
|
|
|
import torch |
|
from torch import Tensor |
|
from typing_extensions import Literal |
|
|
|
from torchmetrics.functional.segmentation.generalized_dice import ( |
|
_generalized_dice_compute, |
|
_generalized_dice_update, |
|
_generalized_dice_validate_args, |
|
) |
|
from torchmetrics.metric import Metric |
|
from torchmetrics.utilities.imports import _MATPLOTLIB_AVAILABLE |
|
from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE |
|
|
|
if not _MATPLOTLIB_AVAILABLE: |
|
__doctest_skip__ = ["GeneralizedDiceScore.plot"] |
|
|
|
|
|
class GeneralizedDiceScore(Metric): |
|
r"""Compute `Generalized Dice Score`_. |
|
|
|
The metric can be used to evaluate the performance of image segmentation models. The Generalized Dice Score is |
|
defined as: |
|
|
|
.. math:: |
|
GDS = \frac{2 \\sum_{i=1}^{N} w_i \\sum_{j} t_{ij} p_{ij}}{ |
|
\\sum_{i=1}^{N} w_i \\sum_{j} t_{ij} + \\sum_{i=1}^{N} w_i \\sum_{j} p_{ij}} |
|
|
|
where :math:`N` is the number of classes, :math:`t_{ij}` is the target tensor, :math:`p_{ij}` is the prediction |
|
tensor, and :math:`w_i` is the weight for class :math:`i`. The weight can be computed in three different ways: |
|
|
|
- `square`: :math:`w_i = 1 / (\\sum_{j} t_{ij})^2` |
|
- `simple`: :math:`w_i = 1 / \\sum_{j} t_{ij}` |
|
- `linear`: :math:`w_i = 1` |
|
|
|
Note that the generalized dice loss can be computed as one minus the generalized dice score. |
|
|
|
As input to ``forward`` and ``update`` the metric accepts the following input: |
|
|
|
- ``preds`` (:class:`~torch.Tensor`): An one-hot boolean tensor of shape ``(N, C, ...)`` with ``N`` being |
|
the number of samples and ``C`` the number of classes. Alternatively, an integer tensor of shape ``(N, ...)`` |
|
can be provided, where the integer values correspond to the class index. The input type can be controlled |
|
with the ``input_format`` argument. |
|
- ``target`` (:class:`~torch.Tensor`): An one-hot boolean tensor of shape ``(N, C, ...)`` with ``N`` being |
|
the number of samples and ``C`` the number of classes. Alternatively, an integer tensor of shape ``(N, ...)`` |
|
can be provided, where the integer values correspond to the class index. The input type can be controlled |
|
with the ``input_format`` argument. |
|
|
|
As output to ``forward`` and ``compute`` the metric returns the following output: |
|
|
|
- ``gds`` (:class:`~torch.Tensor`): The generalized dice score. If ``per_class`` is set to ``True``, the output |
|
will be a tensor of shape ``(C,)`` with the generalized dice score for each class. If ``per_class`` is |
|
set to ``False``, the output will be a scalar tensor. |
|
|
|
Args: |
|
num_classes: The number of classes in the segmentation problem. |
|
include_background: Whether to include the background class in the computation |
|
per_class: Whether to compute the metric for each class separately. |
|
weight_type: The type of weight to apply to each class. Can be one of ``"square"``, ``"simple"``, or |
|
``"linear"``. |
|
input_format: What kind of input the function receives. Choose between ``"one-hot"`` for one-hot encoded tensors |
|
or ``"index"`` for index tensors |
|
kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info. |
|
|
|
Raises: |
|
ValueError: |
|
If ``num_classes`` is not a positive integer |
|
ValueError: |
|
If ``include_background`` is not a boolean |
|
ValueError: |
|
If ``per_class`` is not a boolean |
|
ValueError: |
|
If ``weight_type`` is not one of ``"square"``, ``"simple"``, or ``"linear"`` |
|
ValueError: |
|
If ``input_format`` is not one of ``"one-hot"`` or ``"index"`` |
|
|
|
Example: |
|
>>> from torch import randint |
|
>>> from torchmetrics.segmentation import GeneralizedDiceScore |
|
>>> gds = GeneralizedDiceScore(num_classes=3) |
|
>>> preds = randint(0, 2, (10, 3, 128, 128)) |
|
>>> target = randint(0, 2, (10, 3, 128, 128)) |
|
>>> gds(preds, target) |
|
tensor(0.4992) |
|
>>> gds = GeneralizedDiceScore(num_classes=3, per_class=True) |
|
>>> gds(preds, target) |
|
tensor([0.5001, 0.4993, 0.4982]) |
|
>>> gds = GeneralizedDiceScore(num_classes=3, per_class=True, include_background=False) |
|
>>> gds(preds, target) |
|
tensor([0.4993, 0.4982]) |
|
|
|
""" |
|
|
|
score: Tensor |
|
samples: Tensor |
|
full_state_update: bool = False |
|
is_differentiable: bool = False |
|
higher_is_better: bool = True |
|
plot_lower_bound: float = 0.0 |
|
plot_upper_bound: float = 1.0 |
|
|
|
def __init__( |
|
self, |
|
num_classes: int, |
|
include_background: bool = True, |
|
per_class: bool = False, |
|
weight_type: Literal["square", "simple", "linear"] = "square", |
|
input_format: Literal["one-hot", "index"] = "one-hot", |
|
**kwargs: Any, |
|
) -> None: |
|
super().__init__(**kwargs) |
|
_generalized_dice_validate_args(num_classes, include_background, per_class, weight_type, input_format) |
|
self.num_classes = num_classes |
|
self.include_background = include_background |
|
self.per_class = per_class |
|
self.weight_type = weight_type |
|
self.input_format = input_format |
|
|
|
num_classes = num_classes - 1 if not include_background else num_classes |
|
self.add_state("score", default=torch.zeros(num_classes if per_class else 1), dist_reduce_fx="sum") |
|
self.add_state("samples", default=torch.zeros(1), dist_reduce_fx="sum") |
|
|
|
def update(self, preds: Tensor, target: Tensor) -> None: |
|
"""Update the state with new data.""" |
|
numerator, denominator = _generalized_dice_update( |
|
preds, target, self.num_classes, self.include_background, self.weight_type, self.input_format |
|
) |
|
self.score += _generalized_dice_compute(numerator, denominator, self.per_class).sum(dim=0) |
|
self.samples += preds.shape[0] |
|
|
|
def compute(self) -> Tensor: |
|
"""Compute the final generalized dice score.""" |
|
return self.score / self.samples |
|
|
|
def plot(self, val: Union[Tensor, Sequence[Tensor], None] = None, ax: Optional[_AX_TYPE] = None) -> _PLOT_OUT_TYPE: |
|
"""Plot a single or multiple values from the metric. |
|
|
|
Args: |
|
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results. |
|
If no value is provided, will automatically call `metric.compute` and plot that result. |
|
ax: An matplotlib axis object. If provided will add plot to that axis |
|
|
|
Returns: |
|
Figure and Axes object |
|
|
|
Raises: |
|
ModuleNotFoundError: |
|
If `matplotlib` is not installed |
|
|
|
.. plot:: |
|
:scale: 75 |
|
|
|
>>> # Example plotting a single value |
|
>>> import torch |
|
>>> from torchmetrics.segmentation import GeneralizedDiceScore |
|
>>> metric = GeneralizedDiceScore(num_classes=3) |
|
>>> metric.update(torch.randint(0, 2, (10, 3, 128, 128)), torch.randint(0, 2, (10, 3, 128, 128))) |
|
>>> fig_, ax_ = metric.plot() |
|
|
|
.. plot:: |
|
:scale: 75 |
|
|
|
>>> # Example plotting multiple values |
|
>>> import torch |
|
>>> from torchmetrics.segmentation import GeneralizedDiceScore |
|
>>> metric = GeneralizedDiceScore(num_classes=3) |
|
>>> values = [ ] |
|
>>> for _ in range(10): |
|
... values.append( |
|
... metric(torch.randint(0, 2, (10, 3, 128, 128)), torch.randint(0, 2, (10, 3, 128, 128))) |
|
... ) |
|
>>> fig_, ax_ = metric.plot(values) |
|
|
|
""" |
|
return self._plot(val, ax) |
|
|