|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from collections.abc import Sequence |
|
from typing import Any, List, Optional, Union |
|
|
|
from torch import Tensor |
|
from typing_extensions import Literal |
|
|
|
from torchmetrics.functional.segmentation.dice import ( |
|
_dice_score_compute, |
|
_dice_score_update, |
|
_dice_score_validate_args, |
|
) |
|
from torchmetrics.metric import Metric |
|
from torchmetrics.utilities.data import dim_zero_cat |
|
from torchmetrics.utilities.imports import _MATPLOTLIB_AVAILABLE |
|
from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE |
|
|
|
if not _MATPLOTLIB_AVAILABLE: |
|
__doctest_skip__ = ["DiceScore.plot"] |
|
|
|
|
|
class DiceScore(Metric): |
|
r"""Compute `Dice Score`_. |
|
|
|
The metric can be used to evaluate the performance of image segmentation models. The Dice Score is defined as: |
|
|
|
..math:: |
|
DS = \frac{2 \sum_{i=1}^{N} t_i p_i}{\sum_{i=1}^{N} t_i + \sum_{i=1}^{N} p_i} |
|
|
|
where :math:`N` is the number of classes, :math:`t_i` is the target tensor, and :math:`p_i` is the prediction |
|
tensor. In general the Dice Score can be interpreted as the overlap between the prediction and target tensors |
|
divided by the total number of elements in the tensors. |
|
|
|
As input to ``forward`` and ``update`` the metric accepts the following input: |
|
|
|
- ``preds`` (:class:`~torch.Tensor`): An one-hot boolean tensor of shape ``(N, C, ...)`` with ``N`` being |
|
the number of samples and ``C`` the number of classes. Alternatively, an integer tensor of shape ``(N, ...)`` |
|
can be provided, where the integer values correspond to the class index. The input type can be controlled |
|
with the ``input_format`` argument. |
|
- ``target`` (:class:`~torch.Tensor`): An one-hot boolean tensor of shape ``(N, C, ...)`` with ``N`` being |
|
the number of samples and ``C`` the number of classes. Alternatively, an integer tensor of shape ``(N, ...)`` |
|
can be provided, where the integer values correspond to the class index. The input type can be controlled |
|
with the ``input_format`` argument. |
|
|
|
As output to ``forward`` and ``compute`` the metric returns the following output: |
|
|
|
- ``gds`` (:class:`~torch.Tensor`): The dice score. If ``average`` is set to ``None`` or ``"none"`` the output |
|
will be a tensor of shape ``(C,)`` with the dice score for each class. If ``average`` is set to |
|
``"micro"``, ``"macro"``, or ``"weighted"`` the output will be a scalar tensor. The score is an average over |
|
all samples. |
|
|
|
Args: |
|
num_classes: The number of classes in the segmentation problem. |
|
include_background: Whether to include the background class in the computation. |
|
average: The method to average the dice score. Options are ``"micro"``, ``"macro"``, ``"weighted"``, ``"none"`` |
|
or ``None``. This determines how to average the dice score across different classes. |
|
input_format: What kind of input the function receives. Choose between ``"one-hot"`` for one-hot encoded tensors |
|
or ``"index"`` for index tensors |
|
zero_division: The value to return when there is a division by zero. Options are 1.0, 0.0, "warn" or "nan". |
|
Setting it to "warn" behaves like 0.0 but will also create a warning. |
|
kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info. |
|
|
|
Raises: |
|
ValueError: |
|
If ``num_classes`` is not a positive integer |
|
ValueError: |
|
If ``include_background`` is not a boolean |
|
ValueError: |
|
If ``average`` is not one of ``"micro"``, ``"macro"``, ``"weighted"``, ``"none"`` or ``None`` |
|
ValueError: |
|
If ``input_format`` is not one of ``"one-hot"`` or ``"index"`` |
|
|
|
Example: |
|
>>> from torch import randint |
|
>>> from torchmetrics.segmentation import DiceScore |
|
>>> preds = randint(0, 2, (4, 5, 16, 16)) # 4 samples, 5 classes, 16x16 prediction |
|
>>> target = randint(0, 2, (4, 5, 16, 16)) # 4 samples, 5 classes, 16x16 target |
|
>>> dice_score = DiceScore(num_classes=5, average="micro") |
|
>>> dice_score(preds, target) |
|
tensor(0.4941) |
|
>>> dice_score = DiceScore(num_classes=5, average="none") |
|
>>> dice_score(preds, target) |
|
tensor([0.4860, 0.4999, 0.5014, 0.4885, 0.4915]) |
|
|
|
""" |
|
|
|
full_state_update: bool = False |
|
is_differentiable: bool = False |
|
higher_is_better: bool = True |
|
plot_lower_bound: float = 0.0 |
|
plot_upper_bound: float = 1.0 |
|
|
|
numerator: List[Tensor] |
|
denominator: List[Tensor] |
|
support: List[Tensor] |
|
|
|
def __init__( |
|
self, |
|
num_classes: int, |
|
include_background: bool = True, |
|
average: Optional[Literal["micro", "macro", "weighted", "none"]] = "micro", |
|
input_format: Literal["one-hot", "index"] = "one-hot", |
|
zero_division: Union[float, Literal["warn", "nan"]] = 0.0, |
|
**kwargs: Any, |
|
) -> None: |
|
super().__init__(**kwargs) |
|
_dice_score_validate_args(num_classes, include_background, average, input_format, zero_division) |
|
self.num_classes = num_classes |
|
self.include_background = include_background |
|
self.average = average |
|
self.input_format = input_format |
|
self.zero_division = zero_division |
|
|
|
num_classes = num_classes - 1 if not include_background else num_classes |
|
self.add_state("numerator", [], dist_reduce_fx="cat") |
|
self.add_state("denominator", [], dist_reduce_fx="cat") |
|
self.add_state("support", [], dist_reduce_fx="cat") |
|
|
|
def update(self, preds: Tensor, target: Tensor) -> None: |
|
"""Update the state with new data.""" |
|
numerator, denominator, support = _dice_score_update( |
|
preds, target, self.num_classes, self.include_background, self.input_format |
|
) |
|
self.numerator.append(numerator) |
|
self.denominator.append(denominator) |
|
self.support.append(support) |
|
|
|
def compute(self) -> Tensor: |
|
"""Computes the Dice Score.""" |
|
return _dice_score_compute( |
|
dim_zero_cat(self.numerator), |
|
dim_zero_cat(self.denominator), |
|
self.average, |
|
support=dim_zero_cat(self.support) if self.average == "weighted" else None, |
|
zero_division=self.zero_division, |
|
).nanmean(dim=0) |
|
|
|
def plot(self, val: Union[Tensor, Sequence[Tensor], None] = None, ax: Optional[_AX_TYPE] = None) -> _PLOT_OUT_TYPE: |
|
"""Plot a single or multiple values from the metric. |
|
|
|
Args: |
|
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results. |
|
If no value is provided, will automatically call `metric.compute` and plot that result. |
|
ax: An matplotlib axis object. If provided will add plot to that axis |
|
|
|
Returns: |
|
Figure and Axes object |
|
|
|
Raises: |
|
ModuleNotFoundError: |
|
If `matplotlib` is not installed |
|
|
|
.. plot:: |
|
:scale: 75 |
|
|
|
>>> # Example plotting a single value |
|
>>> import torch |
|
>>> from torchmetrics.segmentation import DiceScore |
|
>>> metric = DiceScore(num_classes=3) |
|
>>> metric.update(torch.randint(0, 2, (10, 3, 128, 128)), torch.randint(0, 2, (10, 3, 128, 128))) |
|
>>> fig_, ax_ = metric.plot() |
|
|
|
.. plot:: |
|
:scale: 75 |
|
|
|
>>> # Example plotting multiple values |
|
>>> import torch |
|
>>> from torchmetrics.segmentation import DiceScore |
|
>>> metric = DiceScore(num_classes=3) |
|
>>> values = [ ] |
|
>>> for _ in range(10): |
|
... values.append( |
|
... metric(torch.randint(0, 2, (10, 3, 128, 128)), torch.randint(0, 2, (10, 3, 128, 128))) |
|
... ) |
|
>>> fig_, ax_ = metric.plot(values) |
|
|
|
""" |
|
return self._plot(val, ax) |
|
|