|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from collections.abc import Sequence |
|
from typing import Any, Callable, Optional, Union |
|
|
|
from torch import Tensor |
|
from typing_extensions import Literal |
|
|
|
from torchmetrics.functional.retrieval.precision import retrieval_precision |
|
from torchmetrics.retrieval.base import RetrievalMetric |
|
from torchmetrics.utilities.imports import _MATPLOTLIB_AVAILABLE |
|
from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE |
|
|
|
if not _MATPLOTLIB_AVAILABLE: |
|
__doctest_skip__ = ["RetrievalPrecision.plot"] |
|
|
|
|
|
class RetrievalPrecision(RetrievalMetric): |
|
"""Compute `IR Precision`_. |
|
|
|
Works with binary target data. Accepts float predictions from a model output. |
|
|
|
As input to ``forward`` and ``update`` the metric accepts the following input: |
|
|
|
- ``preds`` (:class:`~torch.Tensor`): A float tensor of shape ``(N, ...)`` |
|
- ``target`` (:class:`~torch.Tensor`): A long or bool tensor of shape ``(N, ...)`` |
|
- ``indexes`` (:class:`~torch.Tensor`): A long tensor of shape ``(N, ...)`` which indicate to which query a |
|
prediction belongs |
|
|
|
As output to ``forward`` and ``compute`` the metric returns the following output: |
|
|
|
- ``p@k`` (:class:`~torch.Tensor`): A single-value tensor with the precision (at ``top_k``) of the predictions |
|
``preds`` w.r.t. the labels ``target`` |
|
|
|
All ``indexes``, ``preds`` and ``target`` must have the same dimension and will be flatten at the beginning, |
|
so that for example, a tensor of shape ``(N, M)`` is treated as ``(N * M, )``. Predictions will be first grouped by |
|
``indexes`` and then will be computed as the mean of the metric over each query. |
|
|
|
Args: |
|
empty_target_action: |
|
Specify what to do with queries that do not have at least a positive ``target``. Choose from: |
|
|
|
- ``'neg'``: those queries count as ``0.0`` (default) |
|
- ``'pos'``: those queries count as ``1.0`` |
|
- ``'skip'``: skip those queries; if all queries are skipped, ``0.0`` is returned |
|
- ``'error'``: raise a ``ValueError`` |
|
|
|
ignore_index: Ignore predictions where the target is equal to this number. |
|
top_k: Consider only the top k elements for each query (default: ``None``, which considers them all) |
|
adaptive_k: Adjust ``top_k`` to ``min(k, number of documents)`` for each query |
|
aggregation: |
|
Specify how to aggregate over indexes. Can either a custom callable function that takes in a single tensor |
|
and returns a scalar value or one of the following strings: |
|
|
|
- ``'mean'``: average value is returned |
|
- ``'median'``: median value is returned |
|
- ``'max'``: max value is returned |
|
- ``'min'``: min value is returned |
|
|
|
kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info. |
|
|
|
Raises: |
|
ValueError: |
|
If ``empty_target_action`` is not one of ``error``, ``skip``, ``neg`` or ``pos``. |
|
ValueError: |
|
If ``ignore_index`` is not `None` or an integer. |
|
ValueError: |
|
If ``top_k`` is not ``None`` or not an integer greater than 0. |
|
ValueError: |
|
If ``adaptive_k`` is not boolean. |
|
|
|
Example: |
|
>>> from torch import tensor |
|
>>> from torchmetrics.retrieval import RetrievalPrecision |
|
>>> indexes = tensor([0, 0, 0, 1, 1, 1, 1]) |
|
>>> preds = tensor([0.2, 0.3, 0.5, 0.1, 0.3, 0.5, 0.2]) |
|
>>> target = tensor([False, False, True, False, True, False, True]) |
|
>>> p2 = RetrievalPrecision(top_k=2) |
|
>>> p2(preds, target, indexes=indexes) |
|
tensor(0.5000) |
|
|
|
""" |
|
|
|
is_differentiable: bool = False |
|
higher_is_better: bool = True |
|
full_state_update: bool = False |
|
plot_lower_bound: float = 0.0 |
|
plot_upper_bound: float = 1.0 |
|
|
|
def __init__( |
|
self, |
|
empty_target_action: str = "neg", |
|
ignore_index: Optional[int] = None, |
|
top_k: Optional[int] = None, |
|
adaptive_k: bool = False, |
|
aggregation: Union[Literal["mean", "median", "min", "max"], Callable] = "mean", |
|
**kwargs: Any, |
|
) -> None: |
|
super().__init__( |
|
empty_target_action=empty_target_action, |
|
ignore_index=ignore_index, |
|
aggregation=aggregation, |
|
**kwargs, |
|
) |
|
|
|
if top_k is not None and not (isinstance(top_k, int) and top_k > 0): |
|
raise ValueError("`top_k` has to be a positive integer or None") |
|
if not isinstance(adaptive_k, bool): |
|
raise ValueError("`adaptive_k` has to be a boolean") |
|
self.top_k = top_k |
|
self.adaptive_k = adaptive_k |
|
|
|
def _metric(self, preds: Tensor, target: Tensor) -> Tensor: |
|
return retrieval_precision(preds, target, top_k=self.top_k, adaptive_k=self.adaptive_k) |
|
|
|
def plot( |
|
self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None |
|
) -> _PLOT_OUT_TYPE: |
|
"""Plot a single or multiple values from the metric. |
|
|
|
Args: |
|
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results. |
|
If no value is provided, will automatically call `metric.compute` and plot that result. |
|
ax: An matplotlib axis object. If provided will add plot to that axis |
|
|
|
Returns: |
|
Figure and Axes object |
|
|
|
Raises: |
|
ModuleNotFoundError: |
|
If `matplotlib` is not installed |
|
|
|
.. plot:: |
|
:scale: 75 |
|
|
|
>>> import torch |
|
>>> from torchmetrics.retrieval import RetrievalPrecision |
|
>>> # Example plotting a single value |
|
>>> metric = RetrievalPrecision() |
|
>>> metric.update(torch.rand(10,), torch.randint(2, (10,)), indexes=torch.randint(2,(10,))) |
|
>>> fig_, ax_ = metric.plot() |
|
|
|
.. plot:: |
|
:scale: 75 |
|
|
|
>>> import torch |
|
>>> from torchmetrics.retrieval import RetrievalPrecision |
|
>>> # Example plotting multiple values |
|
>>> metric = RetrievalPrecision() |
|
>>> values = [] |
|
>>> for _ in range(10): |
|
... values.append(metric(torch.rand(10,), torch.randint(2, (10,)), indexes=torch.randint(2,(10,)))) |
|
>>> fig, ax = metric.plot(values) |
|
|
|
""" |
|
return self._plot(val, ax) |
|
|