|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from collections.abc import Sequence |
|
from typing import Any, Optional, Union |
|
|
|
import torch |
|
from torch import Tensor |
|
|
|
from torchmetrics.functional.regression.wmape import ( |
|
_weighted_mean_absolute_percentage_error_compute, |
|
_weighted_mean_absolute_percentage_error_update, |
|
) |
|
from torchmetrics.metric import Metric |
|
from torchmetrics.utilities.imports import _MATPLOTLIB_AVAILABLE |
|
from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE |
|
|
|
if not _MATPLOTLIB_AVAILABLE: |
|
__doctest_skip__ = ["WeightedMeanAbsolutePercentageError.plot"] |
|
|
|
|
|
class WeightedMeanAbsolutePercentageError(Metric): |
|
r"""Compute weighted mean absolute percentage error (`WMAPE`_). |
|
|
|
The output of WMAPE metric is a non-negative floating point, where the optimal value is 0. It is computes as: |
|
|
|
.. math:: |
|
\text{WMAPE} = \frac{\sum_{t=1}^n | y_t - \hat{y}_t | }{\sum_{t=1}^n |y_t| } |
|
|
|
Where :math:`y` is a tensor of target values, and :math:`\hat{y}` is a tensor of predictions. |
|
|
|
As input to ``forward`` and ``update`` the metric accepts the following input: |
|
|
|
- ``preds`` (:class:`~torch.Tensor`): Predictions from model |
|
- ``target`` (:class:`~torch.Tensor`): Ground truth float tensor with shape ``(N,d)`` |
|
|
|
As output of ``forward`` and ``compute`` the metric returns the following output: |
|
|
|
- ``wmape`` (:class:`~torch.Tensor`): A tensor with non-negative floating point wmape value between 0 and 1 |
|
|
|
Args: |
|
kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info. |
|
|
|
Example: |
|
>>> from torch import randn |
|
>>> preds = randn(20,) |
|
>>> target = randn(20,) |
|
>>> wmape = WeightedMeanAbsolutePercentageError() |
|
>>> wmape(preds, target) |
|
tensor(1.3967) |
|
|
|
""" |
|
|
|
is_differentiable: bool = True |
|
higher_is_better: bool = False |
|
full_state_update: bool = False |
|
plot_lower_bound: float = 0.0 |
|
|
|
sum_abs_error: Tensor |
|
sum_scale: Tensor |
|
|
|
def __init__(self, **kwargs: Any) -> None: |
|
super().__init__(**kwargs) |
|
self.add_state("sum_abs_error", default=torch.tensor(0.0), dist_reduce_fx="sum") |
|
self.add_state("sum_scale", default=torch.tensor(0.0), dist_reduce_fx="sum") |
|
|
|
def update(self, preds: Tensor, target: Tensor) -> None: |
|
"""Update state with predictions and targets.""" |
|
sum_abs_error, sum_scale = _weighted_mean_absolute_percentage_error_update(preds, target) |
|
|
|
self.sum_abs_error += sum_abs_error |
|
self.sum_scale += sum_scale |
|
|
|
def compute(self) -> Tensor: |
|
"""Compute weighted mean absolute percentage error over state.""" |
|
return _weighted_mean_absolute_percentage_error_compute(self.sum_abs_error, self.sum_scale) |
|
|
|
def plot( |
|
self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None |
|
) -> _PLOT_OUT_TYPE: |
|
"""Plot a single or multiple values from the metric. |
|
|
|
Args: |
|
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results. |
|
If no value is provided, will automatically call `metric.compute` and plot that result. |
|
ax: An matplotlib axis object. If provided will add plot to that axis |
|
|
|
Returns: |
|
Figure and Axes object |
|
|
|
Raises: |
|
ModuleNotFoundError: |
|
If `matplotlib` is not installed |
|
|
|
.. plot:: |
|
:scale: 75 |
|
|
|
>>> from torch import randn |
|
>>> # Example plotting a single value |
|
>>> from torchmetrics.regression import WeightedMeanAbsolutePercentageError |
|
>>> metric = WeightedMeanAbsolutePercentageError() |
|
>>> metric.update(randn(10,), randn(10,)) |
|
>>> fig_, ax_ = metric.plot() |
|
|
|
.. plot:: |
|
:scale: 75 |
|
|
|
>>> from torch import randn |
|
>>> # Example plotting multiple values |
|
>>> from torchmetrics.regression import WeightedMeanAbsolutePercentageError |
|
>>> metric = WeightedMeanAbsolutePercentageError() |
|
>>> values = [] |
|
>>> for _ in range(10): |
|
... values.append(metric(randn(10,), randn(10,))) |
|
>>> fig, ax = metric.plot(values) |
|
|
|
""" |
|
return self._plot(val, ax) |
|
|