|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from collections.abc import Sequence |
|
from typing import Any, Optional, Union |
|
|
|
from torch import Tensor, tensor |
|
|
|
from torchmetrics.functional.regression.symmetric_mape import ( |
|
_symmetric_mean_absolute_percentage_error_compute, |
|
_symmetric_mean_absolute_percentage_error_update, |
|
) |
|
from torchmetrics.metric import Metric |
|
from torchmetrics.utilities.imports import _MATPLOTLIB_AVAILABLE |
|
from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE |
|
|
|
if not _MATPLOTLIB_AVAILABLE: |
|
__doctest_skip__ = ["SymmetricMeanAbsolutePercentageError.plot"] |
|
|
|
|
|
class SymmetricMeanAbsolutePercentageError(Metric): |
|
r"""Compute symmetric mean absolute percentage error (`SMAPE`_). |
|
|
|
.. math:: \text{SMAPE} = \frac{2}{n}\sum_1^n\frac{| y_i - \hat{y_i} |}{\max(| y_i | + | \hat{y_i} |, \epsilon)} |
|
|
|
Where :math:`y` is a tensor of target values, and :math:`\hat{y}` is a tensor of predictions. |
|
|
|
As input to ``forward`` and ``update`` the metric accepts the following input: |
|
|
|
- ``preds`` (:class:`~torch.Tensor`): Predictions from model |
|
- ``target`` (:class:`~torch.Tensor`): Ground truth values |
|
|
|
As output of ``forward`` and ``compute`` the metric returns the following output: |
|
|
|
- ``smape`` (:class:`~torch.Tensor`): A tensor with non-negative floating point smape value between 0 and 2 |
|
|
|
Args: |
|
kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info. |
|
|
|
Example: |
|
>>> from torchmetrics.regression import SymmetricMeanAbsolutePercentageError |
|
>>> target = tensor([1, 10, 1e6]) |
|
>>> preds = tensor([0.9, 15, 1.2e6]) |
|
>>> smape = SymmetricMeanAbsolutePercentageError() |
|
>>> smape(preds, target) |
|
tensor(0.2290) |
|
|
|
""" |
|
|
|
is_differentiable: bool = True |
|
higher_is_better: bool = False |
|
full_state_update: bool = False |
|
plot_lower_bound: float = 0.0 |
|
plot_upper_bound: float = 2.0 |
|
|
|
sum_abs_per_error: Tensor |
|
total: Tensor |
|
|
|
def __init__( |
|
self, |
|
**kwargs: Any, |
|
) -> None: |
|
super().__init__(**kwargs) |
|
|
|
self.add_state("sum_abs_per_error", default=tensor(0.0), dist_reduce_fx="sum") |
|
self.add_state("total", default=tensor(0.0), dist_reduce_fx="sum") |
|
|
|
def update(self, preds: Tensor, target: Tensor) -> None: |
|
"""Update state with predictions and targets.""" |
|
sum_abs_per_error, num_obs = _symmetric_mean_absolute_percentage_error_update(preds, target) |
|
|
|
self.sum_abs_per_error += sum_abs_per_error |
|
self.total += num_obs |
|
|
|
def compute(self) -> Tensor: |
|
"""Compute mean absolute percentage error over state.""" |
|
return _symmetric_mean_absolute_percentage_error_compute(self.sum_abs_per_error, self.total) |
|
|
|
def plot( |
|
self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None |
|
) -> _PLOT_OUT_TYPE: |
|
"""Plot a single or multiple values from the metric. |
|
|
|
Args: |
|
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results. |
|
If no value is provided, will automatically call `metric.compute` and plot that result. |
|
ax: An matplotlib axis object. If provided will add plot to that axis |
|
|
|
Returns: |
|
Figure and Axes object |
|
|
|
Raises: |
|
ModuleNotFoundError: |
|
If `matplotlib` is not installed |
|
|
|
.. plot:: |
|
:scale: 75 |
|
|
|
>>> from torch import randn |
|
>>> # Example plotting a single value |
|
>>> from torchmetrics.regression import SymmetricMeanAbsolutePercentageError |
|
>>> metric = SymmetricMeanAbsolutePercentageError() |
|
>>> metric.update(randn(10,), randn(10,)) |
|
>>> fig_, ax_ = metric.plot() |
|
|
|
.. plot:: |
|
:scale: 75 |
|
|
|
>>> from torch import randn |
|
>>> # Example plotting multiple values |
|
>>> from torchmetrics.regression import SymmetricMeanAbsolutePercentageError |
|
>>> metric = SymmetricMeanAbsolutePercentageError() |
|
>>> values = [] |
|
>>> for _ in range(10): |
|
... values.append(metric(randn(10,), randn(10,))) |
|
>>> fig, ax = metric.plot(values) |
|
|
|
""" |
|
return self._plot(val, ax) |
|
|