|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from collections.abc import Sequence |
|
from typing import Any, List, Optional, Union |
|
|
|
import torch |
|
from torch import Tensor |
|
|
|
from torchmetrics.functional.regression.pearson import _pearson_corrcoef_compute, _pearson_corrcoef_update |
|
from torchmetrics.metric import Metric |
|
from torchmetrics.utilities.imports import _MATPLOTLIB_AVAILABLE |
|
from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE |
|
|
|
if not _MATPLOTLIB_AVAILABLE: |
|
__doctest_skip__ = ["PearsonCorrCoef.plot"] |
|
|
|
|
|
def _final_aggregation( |
|
means_x: torch.Tensor, |
|
means_y: torch.Tensor, |
|
vars_x: torch.Tensor, |
|
vars_y: torch.Tensor, |
|
corrs_xy: torch.Tensor, |
|
nbs: torch.Tensor, |
|
eps: float = 1e-10, |
|
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: |
|
"""Aggregate the statistics from multiple devices. |
|
|
|
Formula taken from here: `Parallel algorithm for calculating variance |
|
<https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Parallel_algorithm>`_ |
|
|
|
We use `eps` to avoid division by zero when `n1` and `n2` are both zero. Generally, the value of `eps` should not |
|
matter, as if `n1` and `n2` are both zero, all the states will also be zero. |
|
|
|
""" |
|
if len(means_x) == 1: |
|
return means_x[0], means_y[0], vars_x[0], vars_y[0], corrs_xy[0], nbs[0] |
|
mx1, my1, vx1, vy1, cxy1, n1 = means_x[0], means_y[0], vars_x[0], vars_y[0], corrs_xy[0], nbs[0] |
|
for i in range(1, len(means_x)): |
|
mx2, my2, vx2, vy2, cxy2, n2 = means_x[i], means_y[i], vars_x[i], vars_y[i], corrs_xy[i], nbs[i] |
|
|
|
nb = torch.where(torch.logical_or(n1, n2), n1 + n2, eps) |
|
|
|
mean_x = (n1 * mx1 + n2 * mx2) / nb |
|
|
|
mean_y = (n1 * my1 + n2 * my2) / nb |
|
|
|
n12_b = n1 * n2 / nb |
|
delta_x = mx2 - mx1 |
|
delta_y = my2 - my1 |
|
|
|
var_x = vx1 + vx2 + n12_b * delta_x**2 |
|
|
|
var_y = vy1 + vy2 + n12_b * delta_y**2 |
|
|
|
corr_xy = cxy1 + cxy2 + n12_b * delta_x * delta_y |
|
|
|
mx1, my1, vx1, vy1, cxy1, n1 = mean_x, mean_y, var_x, var_y, corr_xy, nb |
|
return mean_x, mean_y, var_x, var_y, corr_xy, nb |
|
|
|
|
|
class PearsonCorrCoef(Metric): |
|
r"""Compute `Pearson Correlation Coefficient`_. |
|
|
|
.. math:: |
|
P_{corr}(x,y) = \frac{cov(x,y)}{\sigma_x \sigma_y} |
|
|
|
Where :math:`y` is a tensor of target values, and :math:`x` is a tensor of predictions. |
|
|
|
As input to ``forward`` and ``update`` the metric accepts the following input: |
|
|
|
- ``preds`` (:class:`~torch.Tensor`): either single output float tensor with shape ``(N,)`` |
|
or multioutput float tensor of shape ``(N,d)`` |
|
- ``target`` (:class:`~torch.Tensor`): either single output tensor with shape ``(N,)`` |
|
or multioutput tensor of shape ``(N,d)`` |
|
|
|
As output of ``forward`` and ``compute`` the metric returns the following output: |
|
|
|
- ``pearson`` (:class:`~torch.Tensor`): A tensor with the Pearson Correlation Coefficient |
|
|
|
Args: |
|
num_outputs: Number of outputs in multioutput setting |
|
kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info. |
|
|
|
Example (single output regression): |
|
>>> from torchmetrics.regression import PearsonCorrCoef |
|
>>> target = torch.tensor([3, -0.5, 2, 7]) |
|
>>> preds = torch.tensor([2.5, 0.0, 2, 8]) |
|
>>> pearson = PearsonCorrCoef() |
|
>>> pearson(preds, target) |
|
tensor(0.9849) |
|
|
|
Example (multi output regression): |
|
>>> from torchmetrics.regression import PearsonCorrCoef |
|
>>> target = torch.tensor([[3, -0.5], [2, 7]]) |
|
>>> preds = torch.tensor([[2.5, 0.0], [2, 8]]) |
|
>>> pearson = PearsonCorrCoef(num_outputs=2) |
|
>>> pearson(preds, target) |
|
tensor([1., 1.]) |
|
|
|
""" |
|
|
|
is_differentiable: bool = True |
|
higher_is_better: Optional[bool] = None |
|
full_state_update: bool = True |
|
plot_lower_bound: float = -1.0 |
|
plot_upper_bound: float = 1.0 |
|
preds: List[Tensor] |
|
target: List[Tensor] |
|
mean_x: Tensor |
|
mean_y: Tensor |
|
var_x: Tensor |
|
var_y: Tensor |
|
corr_xy: Tensor |
|
n_total: Tensor |
|
|
|
def __init__( |
|
self, |
|
num_outputs: int = 1, |
|
**kwargs: Any, |
|
) -> None: |
|
super().__init__(**kwargs) |
|
if not isinstance(num_outputs, int) and num_outputs < 1: |
|
raise ValueError("Expected argument `num_outputs` to be an int larger than 0, but got {num_outputs}") |
|
self.num_outputs = num_outputs |
|
|
|
self.add_state("mean_x", default=torch.zeros(self.num_outputs), dist_reduce_fx=None) |
|
self.add_state("mean_y", default=torch.zeros(self.num_outputs), dist_reduce_fx=None) |
|
self.add_state("var_x", default=torch.zeros(self.num_outputs), dist_reduce_fx=None) |
|
self.add_state("var_y", default=torch.zeros(self.num_outputs), dist_reduce_fx=None) |
|
self.add_state("corr_xy", default=torch.zeros(self.num_outputs), dist_reduce_fx=None) |
|
self.add_state("n_total", default=torch.zeros(self.num_outputs), dist_reduce_fx=None) |
|
|
|
def update(self, preds: Tensor, target: Tensor) -> None: |
|
"""Update state with predictions and targets.""" |
|
self.mean_x, self.mean_y, self.var_x, self.var_y, self.corr_xy, self.n_total = _pearson_corrcoef_update( |
|
preds, |
|
target, |
|
self.mean_x, |
|
self.mean_y, |
|
self.var_x, |
|
self.var_y, |
|
self.corr_xy, |
|
self.n_total, |
|
self.num_outputs, |
|
) |
|
|
|
def compute(self) -> Tensor: |
|
"""Compute pearson correlation coefficient over state.""" |
|
if (self.num_outputs == 1 and self.mean_x.numel() > 1) or (self.num_outputs > 1 and self.mean_x.ndim > 1): |
|
|
|
_, _, var_x, var_y, corr_xy, n_total = _final_aggregation( |
|
self.mean_x, self.mean_y, self.var_x, self.var_y, self.corr_xy, self.n_total |
|
) |
|
else: |
|
var_x = self.var_x |
|
var_y = self.var_y |
|
corr_xy = self.corr_xy |
|
n_total = self.n_total |
|
return _pearson_corrcoef_compute(var_x, var_y, corr_xy, n_total) |
|
|
|
def plot( |
|
self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None |
|
) -> _PLOT_OUT_TYPE: |
|
"""Plot a single or multiple values from the metric. |
|
|
|
Args: |
|
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results. |
|
If no value is provided, will automatically call `metric.compute` and plot that result. |
|
ax: An matplotlib axis object. If provided will add plot to that axis |
|
|
|
Returns: |
|
Figure and Axes object |
|
|
|
Raises: |
|
ModuleNotFoundError: |
|
If `matplotlib` is not installed |
|
|
|
.. plot:: |
|
:scale: 75 |
|
|
|
>>> from torch import randn |
|
>>> # Example plotting a single value |
|
>>> from torchmetrics.regression import PearsonCorrCoef |
|
>>> metric = PearsonCorrCoef() |
|
>>> metric.update(randn(10,), randn(10,)) |
|
>>> fig_, ax_ = metric.plot() |
|
|
|
.. plot:: |
|
:scale: 75 |
|
|
|
>>> from torch import randn |
|
>>> # Example plotting multiple values |
|
>>> from torchmetrics.regression import PearsonCorrCoef |
|
>>> metric = PearsonCorrCoef() |
|
>>> values = [] |
|
>>> for _ in range(10): |
|
... values.append(metric(randn(10,), randn(10,))) |
|
>>> fig, ax = metric.plot(values) |
|
|
|
""" |
|
return self._plot(val, ax) |
|
|