|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from collections.abc import Sequence |
|
from typing import Any, Optional, Union |
|
|
|
import torch |
|
from torch import Tensor, tensor |
|
|
|
from torchmetrics.functional.regression.mae import _mean_absolute_error_compute, _mean_absolute_error_update |
|
from torchmetrics.metric import Metric |
|
from torchmetrics.utilities.imports import _MATPLOTLIB_AVAILABLE |
|
from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE |
|
|
|
if not _MATPLOTLIB_AVAILABLE: |
|
__doctest_skip__ = ["MeanAbsoluteError.plot"] |
|
|
|
|
|
class MeanAbsoluteError(Metric): |
|
r"""`Compute Mean Absolute Error`_ (MAE). |
|
|
|
.. math:: \text{MAE} = \frac{1}{N}\sum_i^N | y_i - \hat{y_i} | |
|
|
|
Where :math:`y` is a tensor of target values, and :math:`\hat{y}` is a tensor of predictions. |
|
|
|
As input to ``forward`` and ``update`` the metric accepts the following input: |
|
|
|
- ``preds`` (:class:`~torch.Tensor`): Predictions from model |
|
- ``target`` (:class:`~torch.Tensor`): Ground truth values |
|
|
|
As output of ``forward`` and ``compute`` the metric returns the following output: |
|
|
|
- ``mean_absolute_error`` (:class:`~torch.Tensor`): A tensor with the mean absolute error over the state |
|
|
|
Args: |
|
num_outputs: Number of outputs in multioutput setting |
|
kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info. |
|
|
|
Example: |
|
>>> from torch import tensor |
|
>>> from torchmetrics.regression import MeanAbsoluteError |
|
>>> target = tensor([3.0, -0.5, 2.0, 7.0]) |
|
>>> preds = tensor([2.5, 0.0, 2.0, 8.0]) |
|
>>> mean_absolute_error = MeanAbsoluteError() |
|
>>> mean_absolute_error(preds, target) |
|
tensor(0.5000) |
|
|
|
Example:: |
|
Multioutput mse computation: |
|
|
|
>>> from torch import tensor |
|
>>> from torchmetrics.regression import MeanAbsoluteError |
|
>>> target = tensor([[0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]) |
|
>>> preds = tensor([[1.0, 2.0, 3.0], [1.0, 2.0, 3.0]]) |
|
>>> mean_absolute_error = MeanAbsoluteError(num_outputs=3) |
|
>>> mean_absolute_error(preds, target) |
|
tensor([1., 2., 3.]) |
|
|
|
""" |
|
|
|
is_differentiable: bool = True |
|
higher_is_better: bool = False |
|
full_state_update: bool = False |
|
plot_lower_bound: float = 0.0 |
|
|
|
sum_abs_error: Tensor |
|
total: Tensor |
|
|
|
def __init__( |
|
self, |
|
num_outputs: int = 1, |
|
**kwargs: Any, |
|
) -> None: |
|
super().__init__(**kwargs) |
|
|
|
if not (isinstance(num_outputs, int) and num_outputs > 0): |
|
raise ValueError(f"Expected num_outputs to be a positive integer but got {num_outputs}") |
|
self.num_outputs = num_outputs |
|
|
|
self.add_state("sum_abs_error", default=torch.zeros(num_outputs), dist_reduce_fx="sum") |
|
self.add_state("total", default=tensor(0), dist_reduce_fx="sum") |
|
|
|
def update(self, preds: Tensor, target: Tensor) -> None: |
|
"""Update state with predictions and targets.""" |
|
sum_abs_error, num_obs = _mean_absolute_error_update(preds, target, num_outputs=self.num_outputs) |
|
|
|
self.sum_abs_error += sum_abs_error |
|
self.total += num_obs |
|
|
|
def compute(self) -> Tensor: |
|
"""Compute mean absolute error over state.""" |
|
return _mean_absolute_error_compute(self.sum_abs_error, self.total) |
|
|
|
def plot( |
|
self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None |
|
) -> _PLOT_OUT_TYPE: |
|
"""Plot a single or multiple values from the metric. |
|
|
|
Args: |
|
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results. |
|
If no value is provided, will automatically call `metric.compute` and plot that result. |
|
ax: An matplotlib axis object. If provided will add plot to that axis |
|
|
|
Returns: |
|
Figure and Axes object |
|
|
|
Raises: |
|
ModuleNotFoundError: |
|
If `matplotlib` is not installed |
|
|
|
.. plot:: |
|
:scale: 75 |
|
|
|
>>> from torch import randn |
|
>>> # Example plotting a single value |
|
>>> from torchmetrics.regression import MeanAbsoluteError |
|
>>> metric = MeanAbsoluteError() |
|
>>> metric.update(randn(10,), randn(10,)) |
|
>>> fig_, ax_ = metric.plot() |
|
|
|
.. plot:: |
|
:scale: 75 |
|
|
|
>>> from torch import randn |
|
>>> # Example plotting multiple values |
|
>>> from torchmetrics.regression import MeanAbsoluteError |
|
>>> metric = MeanAbsoluteError() |
|
>>> values = [] |
|
>>> for _ in range(10): |
|
... values.append(metric(randn(10,), randn(10,))) |
|
>>> fig, ax = metric.plot(values) |
|
|
|
""" |
|
return self._plot(val, ax) |
|
|