|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from collections.abc import Sequence |
|
from typing import Any, List, Optional, Union, cast |
|
|
|
import torch |
|
from torch import Tensor |
|
from typing_extensions import Literal |
|
|
|
from torchmetrics.functional.regression.kl_divergence import _kld_compute, _kld_update |
|
from torchmetrics.metric import Metric |
|
from torchmetrics.utilities.data import dim_zero_cat |
|
from torchmetrics.utilities.imports import _MATPLOTLIB_AVAILABLE |
|
from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE |
|
|
|
if not _MATPLOTLIB_AVAILABLE: |
|
__doctest_skip__ = ["KLDivergence.plot"] |
|
|
|
|
|
class KLDivergence(Metric): |
|
r"""Compute the `KL divergence`_. |
|
|
|
.. math:: |
|
D_{KL}(P||Q) = \sum_{x\in\mathcal{X}} P(x) \log\frac{P(x)}{Q{x}} |
|
|
|
Where :math:`P` and :math:`Q` are probability distributions where :math:`P` usually represents a distribution |
|
over data and :math:`Q` is often a prior or approximation of :math:`P`. It should be noted that the KL divergence |
|
is a non-symmetrical metric i.e. :math:`D_{KL}(P||Q) \neq D_{KL}(Q||P)`. |
|
|
|
As input to ``forward`` and ``update`` the metric accepts the following input: |
|
|
|
- ``p`` (:class:`~torch.Tensor`): a data distribution with shape ``(N, d)`` |
|
- ``q`` (:class:`~torch.Tensor`): prior or approximate distribution with shape ``(N, d)`` |
|
|
|
As output of ``forward`` and ``compute`` the metric returns the following output: |
|
|
|
- ``kl_divergence`` (:class:`~torch.Tensor`): A tensor with the KL divergence |
|
|
|
Args: |
|
log_prob: bool indicating if input is log-probabilities or probabilities. If given as probabilities, |
|
will normalize to make sure the distributes sum to 1. |
|
reduction: |
|
Determines how to reduce over the ``N``/batch dimension: |
|
|
|
- ``'mean'`` [default]: Averages score across samples |
|
- ``'sum'``: Sum score across samples |
|
- ``'none'`` or ``None``: Returns score per sample |
|
|
|
kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info. |
|
|
|
Raises: |
|
TypeError: |
|
If ``log_prob`` is not an ``bool``. |
|
ValueError: |
|
If ``reduction`` is not one of ``'mean'``, ``'sum'``, ``'none'`` or ``None``. |
|
|
|
.. attention:: |
|
Half precision is only support on GPU for this metric. |
|
|
|
Example: |
|
>>> from torch import tensor |
|
>>> from torchmetrics.regression import KLDivergence |
|
>>> p = tensor([[0.36, 0.48, 0.16]]) |
|
>>> q = tensor([[1/3, 1/3, 1/3]]) |
|
>>> kl_divergence = KLDivergence() |
|
>>> kl_divergence(p, q) |
|
tensor(0.0853) |
|
|
|
""" |
|
|
|
is_differentiable: bool = True |
|
higher_is_better: bool = False |
|
full_state_update: bool = False |
|
plot_lower_bound: float = 0.0 |
|
|
|
measures: Union[Tensor, List[Tensor]] |
|
total: Tensor |
|
|
|
|
|
|
|
def __init__( |
|
self, |
|
log_prob: bool = False, |
|
reduction: Literal["mean", "sum", "none", None] = "mean", |
|
**kwargs: Any, |
|
) -> None: |
|
super().__init__(**kwargs) |
|
if not isinstance(log_prob, bool): |
|
raise TypeError(f"Expected argument `log_prob` to be bool but got {log_prob}") |
|
self.log_prob = log_prob |
|
|
|
allowed_reduction = ["mean", "sum", "none", None] |
|
if reduction not in allowed_reduction: |
|
raise ValueError(f"Expected argument `reduction` to be one of {allowed_reduction} but got {reduction}") |
|
self.reduction = reduction |
|
|
|
if self.reduction in ["mean", "sum"]: |
|
self.add_state("measures", torch.tensor(0.0), dist_reduce_fx="sum") |
|
else: |
|
self.add_state("measures", [], dist_reduce_fx="cat") |
|
self.add_state("total", torch.tensor(0), dist_reduce_fx="sum") |
|
|
|
def update(self, p: Tensor, q: Tensor) -> None: |
|
"""Update metric states with predictions and targets.""" |
|
measures, total = _kld_update(p, q, self.log_prob) |
|
if self.reduction is None or self.reduction == "none": |
|
cast(List[Tensor], self.measures).append(measures) |
|
else: |
|
self.measures = cast(Tensor, self.measures) + measures.sum() |
|
self.total += total |
|
|
|
def compute(self) -> Tensor: |
|
"""Compute metric.""" |
|
measures: Tensor = ( |
|
dim_zero_cat(cast(List[Tensor], self.measures)) |
|
if self.reduction in ["none", None] |
|
else cast(Tensor, self.measures) |
|
) |
|
return _kld_compute(measures, self.total, self.reduction) |
|
|
|
def plot( |
|
self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None |
|
) -> _PLOT_OUT_TYPE: |
|
"""Plot a single or multiple values from the metric. |
|
|
|
Args: |
|
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results. |
|
If no value is provided, will automatically call `metric.compute` and plot that result. |
|
ax: An matplotlib axis object. If provided will add plot to that axis |
|
|
|
Returns: |
|
Figure and Axes object |
|
|
|
Raises: |
|
ModuleNotFoundError: |
|
If `matplotlib` is not installed |
|
|
|
.. plot:: |
|
:scale: 75 |
|
|
|
>>> from torch import randn |
|
>>> # Example plotting a single value |
|
>>> from torchmetrics.regression import KLDivergence |
|
>>> metric = KLDivergence() |
|
>>> metric.update(randn(10,3).softmax(dim=-1), randn(10,3).softmax(dim=-1)) |
|
>>> fig_, ax_ = metric.plot() |
|
|
|
.. plot:: |
|
:scale: 75 |
|
|
|
>>> from torch import randn |
|
>>> # Example plotting multiple values |
|
>>> from torchmetrics.regression import KLDivergence |
|
>>> metric = KLDivergence() |
|
>>> values = [] |
|
>>> for _ in range(10): |
|
... values.append(metric(randn(10,3).softmax(dim=-1), randn(10,3).softmax(dim=-1))) |
|
>>> fig, ax = metric.plot(values) |
|
|
|
""" |
|
return self._plot(val, ax) |
|
|