|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from collections.abc import Sequence |
|
from typing import Any, List, Optional, Union |
|
|
|
from torch import Tensor |
|
from typing_extensions import Literal |
|
|
|
from torchmetrics.functional.regression.kendall import ( |
|
_kendall_corrcoef_compute, |
|
_kendall_corrcoef_update, |
|
_MetricVariant, |
|
_TestAlternative, |
|
) |
|
from torchmetrics.metric import Metric |
|
from torchmetrics.utilities.data import dim_zero_cat |
|
from torchmetrics.utilities.imports import _MATPLOTLIB_AVAILABLE |
|
from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE |
|
|
|
if not _MATPLOTLIB_AVAILABLE: |
|
__doctest_skip__ = ["KendallRankCorrCoef.plot"] |
|
|
|
|
|
class KendallRankCorrCoef(Metric): |
|
r"""Compute `Kendall Rank Correlation Coefficient`_. |
|
|
|
.. math:: |
|
tau_a = \frac{C - D}{C + D} |
|
|
|
where :math:`C` represents concordant pairs, :math:`D` stands for discordant pairs. |
|
|
|
.. math:: |
|
tau_b = \frac{C - D}{\sqrt{(C + D + T_{preds}) * (C + D + T_{target})}} |
|
|
|
where :math:`C` represents concordant pairs, :math:`D` stands for discordant pairs and :math:`T` represents |
|
a total number of ties. |
|
|
|
.. math:: |
|
tau_c = 2 * \frac{C - D}{n^2 * \frac{m - 1}{m}} |
|
|
|
where :math:`C` represents concordant pairs, :math:`D` stands for discordant pairs, :math:`n` is a total number |
|
of observations and :math:`m` is a ``min`` of unique values in ``preds`` and ``target`` sequence. |
|
|
|
Definitions according to Definition according to `The Treatment of Ties in Ranking Problems`_. |
|
|
|
As input to ``forward`` and ``update`` the metric accepts the following input: |
|
|
|
- ``preds`` (:class:`~torch.Tensor`): Sequence of data in float tensor of either shape ``(N,)`` or ``(N,d)`` |
|
- ``target`` (:class:`~torch.Tensor`): Sequence of data in float tensor of either shape ``(N,)`` or ``(N,d)`` |
|
|
|
As output of ``forward`` and ``compute`` the metric returns the following output: |
|
|
|
- ``kendall`` (:class:`~torch.Tensor`): A tensor with the correlation tau statistic, |
|
and if it is not None, the p-value of corresponding statistical test. |
|
|
|
Args: |
|
variant: Indication of which variant of Kendall's tau to be used |
|
t_test: Indication whether to run t-test |
|
alternative: Alternative hypothesis for t-test. Possible values: |
|
- 'two-sided': the rank correlation is nonzero |
|
- 'less': the rank correlation is negative (less than zero) |
|
- 'greater': the rank correlation is positive (greater than zero) |
|
num_outputs: Number of outputs in multioutput setting |
|
kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info. |
|
|
|
Raises: |
|
ValueError: If ``t_test`` is not of a type bool |
|
ValueError: If ``t_test=True`` and ``alternative=None`` |
|
|
|
Example (single output regression): |
|
>>> from torch import tensor |
|
>>> from torchmetrics.regression import KendallRankCorrCoef |
|
>>> preds = tensor([2.5, 0.0, 2, 8]) |
|
>>> target = tensor([3, -0.5, 2, 1]) |
|
>>> kendall = KendallRankCorrCoef() |
|
>>> kendall(preds, target) |
|
tensor(0.3333) |
|
|
|
Example (multi output regression): |
|
>>> from torchmetrics.regression import KendallRankCorrCoef |
|
>>> preds = tensor([[2.5, 0.0], [2, 8]]) |
|
>>> target = tensor([[3, -0.5], [2, 1]]) |
|
>>> kendall = KendallRankCorrCoef(num_outputs=2) |
|
>>> kendall(preds, target) |
|
tensor([1., 1.]) |
|
|
|
Example (single output regression with t-test): |
|
>>> from torchmetrics.regression import KendallRankCorrCoef |
|
>>> preds = tensor([2.5, 0.0, 2, 8]) |
|
>>> target = tensor([3, -0.5, 2, 1]) |
|
>>> kendall = KendallRankCorrCoef(t_test=True, alternative='two-sided') |
|
>>> kendall(preds, target) |
|
(tensor(0.3333), tensor(0.4969)) |
|
|
|
Example (multi output regression with t-test): |
|
>>> from torchmetrics.regression import KendallRankCorrCoef |
|
>>> preds = tensor([[2.5, 0.0], [2, 8]]) |
|
>>> target = tensor([[3, -0.5], [2, 1]]) |
|
>>> kendall = KendallRankCorrCoef(t_test=True, alternative='two-sided', num_outputs=2) |
|
>>> kendall(preds, target) |
|
(tensor([1., 1.]), tensor([nan, nan])) |
|
|
|
""" |
|
|
|
is_differentiable = False |
|
higher_is_better = None |
|
full_state_update = True |
|
plot_lower_bound: float = 0.0 |
|
plot_upper_bound: float = 1.0 |
|
|
|
preds: List[Tensor] |
|
target: List[Tensor] |
|
|
|
def __init__( |
|
self, |
|
variant: Literal["a", "b", "c"] = "b", |
|
t_test: bool = False, |
|
alternative: Optional[Literal["two-sided", "less", "greater"]] = "two-sided", |
|
num_outputs: int = 1, |
|
**kwargs: Any, |
|
) -> None: |
|
super().__init__(**kwargs) |
|
if not isinstance(t_test, bool): |
|
raise ValueError(f"Argument `t_test` is expected to be of a type `bool`, but got {type(t_test)}.") |
|
if t_test and alternative is None: |
|
raise ValueError("Argument `alternative` is required if `t_test=True` but got `None`.") |
|
|
|
self.variant = _MetricVariant.from_str(str(variant)) |
|
self.alternative = _TestAlternative.from_str(str(alternative)) if t_test else None |
|
self.num_outputs = num_outputs |
|
|
|
self.add_state("preds", [], dist_reduce_fx="cat") |
|
self.add_state("target", [], dist_reduce_fx="cat") |
|
|
|
def update(self, preds: Tensor, target: Tensor) -> None: |
|
"""Update variables required to compute Kendall rank correlation coefficient.""" |
|
self.preds, self.target = _kendall_corrcoef_update( |
|
preds, |
|
target, |
|
self.preds, |
|
self.target, |
|
num_outputs=self.num_outputs, |
|
) |
|
|
|
def compute(self) -> Union[Tensor, tuple[Tensor, Tensor]]: |
|
"""Compute Kendall rank correlation coefficient, and optionally p-value of corresponding statistical test.""" |
|
preds = dim_zero_cat(self.preds) |
|
target = dim_zero_cat(self.target) |
|
tau, p_value = _kendall_corrcoef_compute( |
|
preds, |
|
target, |
|
self.variant, |
|
self.alternative, |
|
) |
|
|
|
if p_value is not None: |
|
return tau, p_value |
|
return tau |
|
|
|
def plot( |
|
self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None |
|
) -> _PLOT_OUT_TYPE: |
|
"""Plot a single or multiple values from the metric. |
|
|
|
Args: |
|
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results. |
|
If no value is provided, will automatically call `metric.compute` and plot that result. |
|
ax: An matplotlib axis object. If provided will add plot to that axis |
|
|
|
Returns: |
|
Figure and Axes object |
|
|
|
Raises: |
|
ModuleNotFoundError: |
|
If `matplotlib` is not installed |
|
|
|
.. plot:: |
|
:scale: 75 |
|
|
|
>>> from torch import randn |
|
>>> # Example plotting a single value |
|
>>> from torchmetrics.regression import KendallRankCorrCoef |
|
>>> metric = KendallRankCorrCoef() |
|
>>> metric.update(randn(10,), randn(10,)) |
|
>>> fig_, ax_ = metric.plot() |
|
|
|
.. plot:: |
|
:scale: 75 |
|
|
|
>>> from torch import randn |
|
>>> # Example plotting multiple values |
|
>>> from torchmetrics.regression import KendallRankCorrCoef |
|
>>> metric = KendallRankCorrCoef() |
|
>>> values = [] |
|
>>> for _ in range(10): |
|
... values.append(metric(randn(10,), randn(10,))) |
|
>>> fig, ax = metric.plot(values) |
|
|
|
""" |
|
return self._plot(val, ax) |
|
|