|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from collections.abc import Sequence |
|
from typing import Any, List, Optional, Union |
|
|
|
from torch import Tensor |
|
from typing_extensions import Literal |
|
|
|
from torchmetrics.functional.regression.cosine_similarity import _cosine_similarity_compute, _cosine_similarity_update |
|
from torchmetrics.metric import Metric |
|
from torchmetrics.utilities.data import dim_zero_cat |
|
from torchmetrics.utilities.imports import _MATPLOTLIB_AVAILABLE |
|
from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE |
|
|
|
if not _MATPLOTLIB_AVAILABLE: |
|
__doctest_skip__ = ["CosineSimilarity.plot"] |
|
|
|
|
|
class CosineSimilarity(Metric): |
|
r"""Compute the `Cosine Similarity`_. |
|
|
|
.. math:: |
|
cos_{sim}(x,y) = \frac{x \cdot y}{||x|| \cdot ||y||} = |
|
\frac{\sum_{i=1}^n x_i y_i}{\sqrt{\sum_{i=1}^n x_i^2}\sqrt{\sum_{i=1}^n y_i^2}} |
|
|
|
where :math:`y` is a tensor of target values, and :math:`x` is a tensor of predictions. |
|
|
|
As input to ``forward`` and ``update`` the metric accepts the following input: |
|
|
|
- ``preds`` (:class:`~torch.Tensor`): Predicted float tensor with shape ``(N,d)`` |
|
- ``target`` (:class:`~torch.Tensor`): Ground truth float tensor with shape ``(N,d)`` |
|
|
|
As output of ``forward`` and ``compute`` the metric returns the following output: |
|
|
|
- ``cosine_similarity`` (:class:`~torch.Tensor`): A float tensor with the cosine similarity |
|
|
|
Args: |
|
reduction: how to reduce over the batch dimension using 'sum', 'mean' or 'none' (taking the individual scores) |
|
kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info. |
|
|
|
Example: |
|
>>> from torch import tensor |
|
>>> from torchmetrics.regression import CosineSimilarity |
|
>>> target = tensor([[0, 1], [1, 1]]) |
|
>>> preds = tensor([[0, 1], [0, 1]]) |
|
>>> cosine_similarity = CosineSimilarity(reduction = 'mean') |
|
>>> cosine_similarity(preds, target) |
|
tensor(0.8536) |
|
|
|
""" |
|
|
|
is_differentiable: bool = True |
|
higher_is_better: bool = True |
|
full_state_update: bool = False |
|
plot_lower_bound: float = 0.0 |
|
plot_upper_bound: float = 1.0 |
|
|
|
preds: List[Tensor] |
|
target: List[Tensor] |
|
|
|
def __init__( |
|
self, |
|
reduction: Literal["mean", "sum", "none", None] = "sum", |
|
**kwargs: Any, |
|
) -> None: |
|
super().__init__(**kwargs) |
|
allowed_reduction = ("sum", "mean", "none", None) |
|
if reduction not in allowed_reduction: |
|
raise ValueError(f"Expected argument `reduction` to be one of {allowed_reduction} but got {reduction}") |
|
self.reduction = reduction |
|
|
|
self.add_state("preds", [], dist_reduce_fx="cat") |
|
self.add_state("target", [], dist_reduce_fx="cat") |
|
|
|
def update(self, preds: Tensor, target: Tensor) -> None: |
|
"""Update metric states with predictions and targets.""" |
|
preds, target = _cosine_similarity_update(preds, target) |
|
|
|
self.preds.append(preds) |
|
self.target.append(target) |
|
|
|
def compute(self) -> Tensor: |
|
"""Compute metric.""" |
|
preds = dim_zero_cat(self.preds) |
|
target = dim_zero_cat(self.target) |
|
return _cosine_similarity_compute(preds, target, self.reduction) |
|
|
|
def plot( |
|
self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None |
|
) -> _PLOT_OUT_TYPE: |
|
"""Plot a single or multiple values from the metric. |
|
|
|
Args: |
|
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results. |
|
If no value is provided, will automatically call `metric.compute` and plot that result. |
|
ax: An matplotlib axis object. If provided will add plot to that axis |
|
|
|
Returns: |
|
Figure and Axes object |
|
|
|
Raises: |
|
ModuleNotFoundError: |
|
If `matplotlib` is not installed |
|
|
|
.. plot:: |
|
:scale: 75 |
|
|
|
>>> from torch import randn |
|
>>> # Example plotting a single value |
|
>>> from torchmetrics.regression import CosineSimilarity |
|
>>> metric = CosineSimilarity() |
|
>>> metric.update(randn(10,2), randn(10,2)) |
|
>>> fig_, ax_ = metric.plot() |
|
|
|
.. plot:: |
|
:scale: 75 |
|
|
|
>>> from torch import randn |
|
>>> # Example plotting multiple values |
|
>>> from torchmetrics.regression import CosineSimilarity |
|
>>> metric = CosineSimilarity() |
|
>>> values = [] |
|
>>> for _ in range(10): |
|
... values.append(metric(randn(10,2), randn(10,2))) |
|
>>> fig, ax = metric.plot(values) |
|
|
|
""" |
|
return self._plot(val, ax) |
|
|