|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from collections.abc import Sequence |
|
from typing import Any, Optional, Union |
|
|
|
import torch |
|
from torch import Tensor |
|
from typing_extensions import Literal |
|
|
|
from torchmetrics.functional.nominal.cramers import _cramers_v_compute, _cramers_v_update |
|
from torchmetrics.functional.nominal.utils import _nominal_input_validation |
|
from torchmetrics.metric import Metric |
|
from torchmetrics.utilities.imports import _MATPLOTLIB_AVAILABLE |
|
from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE |
|
|
|
if not _MATPLOTLIB_AVAILABLE: |
|
__doctest_skip__ = ["CramersV.plot"] |
|
|
|
|
|
class CramersV(Metric): |
|
r"""Compute `Cramer's V`_ statistic measuring the association between two categorical (nominal) data series. |
|
|
|
.. math:: |
|
V = \sqrt{\frac{\chi^2 / n}{\min(r - 1, k - 1)}} |
|
|
|
where |
|
|
|
.. math:: |
|
\chi^2 = \sum_{i,j} \ frac{\left(n_{ij} - \frac{n_{i.} n_{.j}}{n}\right)^2}{\frac{n_{i.} n_{.j}}{n}} |
|
|
|
where :math:`n_{ij}` denotes the number of times the values :math:`(A_i, B_j)` are observed with :math:`A_i, B_j` |
|
represent frequencies of values in ``preds`` and ``target``, respectively. Cramer's V is a symmetric coefficient, |
|
i.e. :math:`V(preds, target) = V(target, preds)`, so order of input arguments does not matter. The output values |
|
lies in [0, 1] with 1 meaning the perfect association. |
|
|
|
As input to ``forward`` and ``update`` the metric accepts the following input: |
|
|
|
- ``preds`` (:class:`~torch.Tensor`): Either 1D or 2D tensor of categorical (nominal) data from the first data |
|
series with shape ``(batch_size,)`` or ``(batch_size, num_classes)``, respectively. |
|
- ``target`` (:class:`~torch.Tensor`): Either 1D or 2D tensor of categorical (nominal) data from the second data |
|
series with shape ``(batch_size,)`` or ``(batch_size, num_classes)``, respectively. |
|
|
|
As output of ``forward`` and ``compute`` the metric returns the following output: |
|
|
|
- ``cramers_v`` (:class:`~torch.Tensor`): Scalar tensor containing the Cramer's V statistic. |
|
|
|
Args: |
|
num_classes: Integer specifying the number of classes |
|
bias_correction: Indication of whether to use bias correction. |
|
nan_strategy: Indication of whether to replace or drop ``NaN`` values |
|
nan_replace_value: Value to replace ``NaN``s when ``nan_strategy = 'replace'`` |
|
kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info. |
|
|
|
Raises: |
|
ValueError: |
|
If `nan_strategy` is not one of `'replace'` and `'drop'` |
|
ValueError: |
|
If `nan_strategy` is equal to `'replace'` and `nan_replace_value` is not an `int` or `float` |
|
|
|
Example:: |
|
|
|
>>> from torch import randint, randn |
|
>>> from torchmetrics.nominal import CramersV |
|
>>> preds = randint(0, 4, (100,)) |
|
>>> target = (preds + randn(100)).round().clamp(0, 4) |
|
>>> cramers_v = CramersV(num_classes=5) |
|
>>> cramers_v(preds, target) |
|
tensor(0.5284) |
|
|
|
""" |
|
|
|
full_state_update: bool = False |
|
is_differentiable: bool = False |
|
higher_is_better: bool = True |
|
plot_lower_bound: float = 0.0 |
|
plot_upper_bound: float = 1.0 |
|
confmat: Tensor |
|
|
|
def __init__( |
|
self, |
|
num_classes: int, |
|
bias_correction: bool = True, |
|
nan_strategy: Literal["replace", "drop"] = "replace", |
|
nan_replace_value: Optional[float] = 0.0, |
|
**kwargs: Any, |
|
) -> None: |
|
super().__init__(**kwargs) |
|
self.num_classes = num_classes |
|
self.bias_correction = bias_correction |
|
|
|
_nominal_input_validation(nan_strategy, nan_replace_value) |
|
self.nan_strategy = nan_strategy |
|
self.nan_replace_value = nan_replace_value |
|
|
|
self.add_state("confmat", torch.zeros(num_classes, num_classes), dist_reduce_fx="sum") |
|
|
|
def update(self, preds: Tensor, target: Tensor) -> None: |
|
"""Update state with predictions and targets.""" |
|
confmat = _cramers_v_update(preds, target, self.num_classes, self.nan_strategy, self.nan_replace_value) |
|
self.confmat += confmat |
|
|
|
def compute(self) -> Tensor: |
|
"""Compute Cramer's V statistic.""" |
|
return _cramers_v_compute(self.confmat, self.bias_correction) |
|
|
|
def plot(self, val: Union[Tensor, Sequence[Tensor], None] = None, ax: Optional[_AX_TYPE] = None) -> _PLOT_OUT_TYPE: |
|
"""Plot a single or multiple values from the metric. |
|
|
|
Args: |
|
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results. |
|
If no value is provided, will automatically call `metric.compute` and plot that result. |
|
ax: An matplotlib axis object. If provided will add plot to that axis |
|
|
|
Returns: |
|
Figure and Axes object |
|
|
|
Raises: |
|
ModuleNotFoundError: |
|
If `matplotlib` is not installed |
|
|
|
.. plot:: |
|
:scale: 75 |
|
|
|
>>> # Example plotting a single value |
|
>>> import torch |
|
>>> from torchmetrics.nominal import CramersV |
|
>>> metric = CramersV(num_classes=5) |
|
>>> metric.update(torch.randint(0, 4, (100,)), torch.randint(0, 4, (100,))) |
|
>>> fig_, ax_ = metric.plot() |
|
|
|
.. plot:: |
|
:scale: 75 |
|
|
|
>>> # Example plotting multiple values |
|
>>> import torch |
|
>>> from torchmetrics.nominal import CramersV |
|
>>> metric = CramersV(num_classes=5) |
|
>>> values = [ ] |
|
>>> for _ in range(10): |
|
... values.append(metric(torch.randint(0, 4, (100,)), torch.randint(0, 4, (100,)))) |
|
>>> fig_, ax_ = metric.plot(values) |
|
|
|
""" |
|
return self._plot(val, ax) |
|
|