|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Union |
|
|
|
import torch |
|
from torch import Tensor, linalg |
|
|
|
from torchmetrics.utilities.checks import _check_same_shape |
|
from torchmetrics.utilities.prints import rank_zero_warn |
|
|
|
|
|
def procrustes_disparity( |
|
point_cloud1: Tensor, point_cloud2: Tensor, return_all: bool = False |
|
) -> Union[Tensor, tuple[Tensor, Tensor, Tensor]]: |
|
"""Runs procrustrus analysis on a batch of data points. |
|
|
|
Works similar ``scipy.spatial.procrustes`` but for batches of data points. |
|
|
|
Args: |
|
point_cloud1: The first set of data points |
|
point_cloud2: The second set of data points |
|
return_all: If True, returns the scale and rotation matrices along with the disparity |
|
|
|
""" |
|
_check_same_shape(point_cloud1, point_cloud2) |
|
if point_cloud1.ndim != 3: |
|
raise ValueError( |
|
"Expected both datasets to be 3D tensors of shape (N, M, D), where N is the batch size, M is the number of" |
|
f" data points and D is the dimensionality of the data points, but got {point_cloud1.ndim} dimensions." |
|
) |
|
|
|
point_cloud1 = point_cloud1 - point_cloud1.mean(dim=1, keepdim=True) |
|
point_cloud2 = point_cloud2 - point_cloud2.mean(dim=1, keepdim=True) |
|
point_cloud1 /= linalg.norm(point_cloud1, dim=[1, 2], keepdim=True) |
|
point_cloud2 /= linalg.norm(point_cloud2, dim=[1, 2], keepdim=True) |
|
|
|
try: |
|
u, w, v = linalg.svd( |
|
torch.matmul(point_cloud2.transpose(1, 2), point_cloud1).transpose(1, 2), full_matrices=False |
|
) |
|
except Exception as ex: |
|
rank_zero_warn( |
|
f"SVD calculation in procrustes_disparity failed with exception {ex}. Returning 0 disparity and identity" |
|
" scale/rotation.", |
|
UserWarning, |
|
) |
|
return torch.tensor(0.0), torch.ones(point_cloud1.shape[0]), torch.eye(point_cloud1.shape[2]) |
|
|
|
rotation = torch.matmul(u, v) |
|
scale = w.sum(1, keepdim=True) |
|
point_cloud2 = scale[:, None] * torch.matmul(point_cloud2, rotation.transpose(1, 2)) |
|
disparity = (point_cloud1 - point_cloud2).square().sum(dim=[1, 2]) |
|
if return_all: |
|
return disparity, scale, rotation |
|
return disparity |
|
|