|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Optional |
|
|
|
from torch import Tensor, tensor |
|
|
|
from torchmetrics.utilities.checks import _check_retrieval_functional_inputs |
|
|
|
|
|
def retrieval_precision(preds: Tensor, target: Tensor, top_k: Optional[int] = None, adaptive_k: bool = False) -> Tensor: |
|
"""Compute the precision metric for information retrieval. |
|
|
|
Precision is the fraction of relevant documents among all the retrieved documents. |
|
|
|
``preds`` and ``target`` should be of the same shape and live on the same device. If no ``target`` is ``True``, |
|
``0`` is returned. ``target`` must be either `bool` or `integers` and ``preds`` must be ``float``, |
|
otherwise an error is raised. If you want to measure Precision@K, ``top_k`` must be a positive integer. |
|
|
|
Args: |
|
preds: estimated probabilities of each document to be relevant. |
|
target: ground truth about each document being relevant or not. |
|
top_k: consider only the top k elements (default: ``None``, which considers them all) |
|
adaptive_k: adjust `k` to `min(k, number of documents)` for each query |
|
|
|
Returns: |
|
A single-value tensor with the precision (at ``top_k``) of the predictions ``preds`` w.r.t. the labels |
|
``target``. |
|
|
|
Raises: |
|
ValueError: |
|
If ``top_k`` is not `None` or an integer larger than 0. |
|
ValueError: |
|
If ``adaptive_k`` is not boolean. |
|
|
|
Example: |
|
>>> preds = tensor([0.2, 0.3, 0.5]) |
|
>>> target = tensor([True, False, True]) |
|
>>> retrieval_precision(preds, target, top_k=2) |
|
tensor(0.5000) |
|
|
|
""" |
|
preds, target = _check_retrieval_functional_inputs(preds, target) |
|
|
|
if not isinstance(adaptive_k, bool): |
|
raise ValueError("`adaptive_k` has to be a boolean") |
|
|
|
if top_k is None or (adaptive_k and top_k > preds.shape[-1]): |
|
top_k = preds.shape[-1] |
|
|
|
if not (isinstance(top_k, int) and top_k > 0): |
|
raise ValueError("`top_k` has to be a positive integer or None") |
|
|
|
if not target.sum(): |
|
return tensor(0.0, device=preds.device) |
|
|
|
relevant = target[preds.topk(min(top_k, preds.shape[-1]), dim=-1)[1]].sum().float() |
|
return relevant / top_k |
|
|