jamtur01's picture
Upload folder using huggingface_hub
9c6594c verified
# Copyright The Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import torch
from torch import Tensor
from torchmetrics.functional.regression.utils import _check_data_shape_to_num_outputs
from torchmetrics.utilities import rank_zero_warn
from torchmetrics.utilities.checks import _check_same_shape
def _pearson_corrcoef_update(
preds: Tensor,
target: Tensor,
mean_x: Tensor,
mean_y: Tensor,
var_x: Tensor,
var_y: Tensor,
corr_xy: Tensor,
num_prior: Tensor,
num_outputs: int,
) -> tuple[Tensor, Tensor, Tensor, Tensor, Tensor, Tensor]:
"""Update and returns variables required to compute Pearson Correlation Coefficient.
Check for same shape of input tensors.
Args:
preds: estimated scores
target: ground truth scores
mean_x: current mean estimate of x tensor
mean_y: current mean estimate of y tensor
var_x: current variance estimate of x tensor
var_y: current variance estimate of y tensor
corr_xy: current covariance estimate between x and y tensor
num_prior: current number of observed observations
num_outputs: Number of outputs in multioutput setting
"""
# Data checking
_check_same_shape(preds, target)
_check_data_shape_to_num_outputs(preds, target, num_outputs)
num_obs = preds.shape[0]
cond = num_prior.mean() > 0 or num_obs == 1
if cond:
mx_new = (num_prior * mean_x + preds.sum(0)) / (num_prior + num_obs)
my_new = (num_prior * mean_y + target.sum(0)) / (num_prior + num_obs)
else:
mx_new = preds.mean(0).to(mean_x.dtype)
my_new = target.mean(0).to(mean_y.dtype)
num_prior += num_obs
if cond:
var_x += ((preds - mx_new) * (preds - mean_x)).sum(0)
var_y += ((target - my_new) * (target - mean_y)).sum(0)
else:
var_x += preds.var(0) * (num_obs - 1)
var_y += target.var(0) * (num_obs - 1)
corr_xy += ((preds - mx_new) * (target - mean_y)).sum(0)
mean_x = mx_new
mean_y = my_new
return mean_x, mean_y, var_x, var_y, corr_xy, num_prior
def _pearson_corrcoef_compute(
var_x: Tensor,
var_y: Tensor,
corr_xy: Tensor,
nb: Tensor,
) -> Tensor:
"""Compute the final pearson correlation based on accumulated statistics.
Args:
var_x: variance estimate of x tensor
var_y: variance estimate of y tensor
corr_xy: covariance estimate between x and y tensor
nb: number of observations
"""
# prevent overwrite the inputs
var_x = var_x / (nb - 1)
var_y = var_y / (nb - 1)
corr_xy = corr_xy / (nb - 1)
# if var_x, var_y is float16 and on cpu, make it bfloat16 as sqrt is not supported for float16
# on cpu, remove this after https://github.com/pytorch/pytorch/issues/54774 is fixed
if var_x.dtype == torch.float16 and var_x.device == torch.device("cpu"):
var_x = var_x.bfloat16()
var_y = var_y.bfloat16()
bound = math.sqrt(torch.finfo(var_x.dtype).eps)
if (var_x < bound).any() or (var_y < bound).any():
rank_zero_warn(
"The variance of predictions or target is close to zero. This can cause instability in Pearson correlation"
"coefficient, leading to wrong results. Consider re-scaling the input if possible or computing using a"
f"larger dtype (currently using {var_x.dtype}). Setting the correlation coefficient to nan.",
UserWarning,
)
zero_var_mask = (var_x < bound) | (var_y < bound)
corrcoef = torch.full_like(corr_xy, float("nan"), device=corr_xy.device, dtype=corr_xy.dtype)
valid_mask = ~zero_var_mask
if valid_mask.any():
corrcoef[valid_mask] = (
(corr_xy[valid_mask] / (var_x[valid_mask] * var_y[valid_mask]).sqrt()).squeeze().to(corrcoef.dtype)
)
corrcoef = torch.clamp(corrcoef, -1.0, 1.0)
return corrcoef.squeeze()
def pearson_corrcoef(preds: Tensor, target: Tensor) -> Tensor:
"""Compute pearson correlation coefficient.
Args:
preds: estimated scores
target: ground truth scores
Example (single output regression):
>>> from torchmetrics.functional.regression import pearson_corrcoef
>>> target = torch.tensor([3, -0.5, 2, 7])
>>> preds = torch.tensor([2.5, 0.0, 2, 8])
>>> pearson_corrcoef(preds, target)
tensor(0.9849)
Example (multi output regression):
>>> from torchmetrics.functional.regression import pearson_corrcoef
>>> target = torch.tensor([[3, -0.5], [2, 7]])
>>> preds = torch.tensor([[2.5, 0.0], [2, 8]])
>>> pearson_corrcoef(preds, target)
tensor([1., 1.])
"""
d = preds.shape[1] if preds.ndim == 2 else 1
_temp = torch.zeros(d, dtype=preds.dtype, device=preds.device)
mean_x, mean_y, var_x = _temp.clone(), _temp.clone(), _temp.clone()
var_y, corr_xy, nb = _temp.clone(), _temp.clone(), _temp.clone()
_, _, var_x, var_y, corr_xy, nb = _pearson_corrcoef_update(
preds, target, mean_x, mean_y, var_x, var_y, corr_xy, nb, num_outputs=1 if preds.ndim == 1 else preds.shape[-1]
)
return _pearson_corrcoef_compute(var_x, var_y, corr_xy, nb)