|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Union |
|
|
|
import torch |
|
from torch import Tensor |
|
|
|
from torchmetrics.utilities.checks import _check_same_shape |
|
|
|
|
|
def _mean_absolute_error_update(preds: Tensor, target: Tensor, num_outputs: int) -> tuple[Tensor, int]: |
|
"""Update and returns variables required to compute Mean Absolute Error. |
|
|
|
Check for same shape of input tensors. |
|
|
|
Args: |
|
preds: Predicted tensor |
|
target: Ground truth tensor |
|
num_outputs: Number of outputs in multioutput setting |
|
|
|
""" |
|
_check_same_shape(preds, target) |
|
if num_outputs == 1: |
|
preds = preds.view(-1) |
|
target = target.view(-1) |
|
preds = preds if preds.is_floating_point else preds.float() |
|
target = target if target.is_floating_point else target.float() |
|
sum_abs_error = torch.sum(torch.abs(preds - target), dim=0) |
|
return sum_abs_error, target.shape[0] |
|
|
|
|
|
def _mean_absolute_error_compute(sum_abs_error: Tensor, num_obs: Union[int, Tensor]) -> Tensor: |
|
"""Compute Mean Absolute Error. |
|
|
|
Args: |
|
sum_abs_error: Sum of absolute value of errors over all observations |
|
num_obs: Number of predictions or observations |
|
|
|
Example: |
|
>>> preds = torch.tensor([0., 1, 2, 3]) |
|
>>> target = torch.tensor([0., 1, 2, 2]) |
|
>>> sum_abs_error, num_obs = _mean_absolute_error_update(preds, target, num_outputs=1) |
|
>>> _mean_absolute_error_compute(sum_abs_error, num_obs) |
|
tensor(0.2500) |
|
|
|
""" |
|
return sum_abs_error / num_obs |
|
|
|
|
|
def mean_absolute_error(preds: Tensor, target: Tensor, num_outputs: int = 1) -> Tensor: |
|
"""Compute mean absolute error. |
|
|
|
Args: |
|
preds: estimated labels |
|
target: ground truth labels |
|
num_outputs: Number of outputs in multioutput setting |
|
|
|
Return: |
|
Tensor with MAE |
|
|
|
Example: |
|
>>> from torchmetrics.functional.regression import mean_absolute_error |
|
>>> x = torch.tensor([0., 1, 2, 3]) |
|
>>> y = torch.tensor([0., 1, 2, 2]) |
|
>>> mean_absolute_error(x, y) |
|
tensor(0.2500) |
|
|
|
""" |
|
sum_abs_error, num_obs = _mean_absolute_error_update(preds, target, num_outputs=num_outputs) |
|
return _mean_absolute_error_compute(sum_abs_error, num_obs) |
|
|