|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Optional |
|
|
|
import torch |
|
from torch import Tensor |
|
from typing_extensions import Literal |
|
|
|
from torchmetrics.functional.pairwise.helpers import _check_input, _reduce_distance_matrix |
|
from torchmetrics.utilities.exceptions import TorchMetricsUserError |
|
|
|
|
|
def _pairwise_minkowski_distance_update( |
|
x: Tensor, y: Optional[Tensor] = None, exponent: float = 2, zero_diagonal: Optional[bool] = None |
|
) -> Tensor: |
|
"""Calculate the pairwise minkowski distance matrix. |
|
|
|
Args: |
|
x: tensor of shape ``[N,d]`` |
|
y: tensor of shape ``[M,d]`` |
|
exponent: int or float larger than 1, exponent to which the difference between preds and target is to be raised |
|
zero_diagonal: determines if the diagonal of the distance matrix should be set to zero |
|
|
|
""" |
|
x, y, zero_diagonal = _check_input(x, y, zero_diagonal) |
|
if not (isinstance(exponent, (float, int)) and exponent >= 1): |
|
raise TorchMetricsUserError(f"Argument ``p`` must be a float or int greater than 1, but got {exponent}") |
|
|
|
_orig_dtype = x.dtype |
|
x = x.to(torch.float64) |
|
y = y.to(torch.float64) |
|
distance = (x.unsqueeze(1) - y.unsqueeze(0)).abs().pow(exponent).sum(-1).pow(1.0 / exponent) |
|
if zero_diagonal: |
|
distance.fill_diagonal_(0) |
|
return distance.to(_orig_dtype) |
|
|
|
|
|
def pairwise_minkowski_distance( |
|
x: Tensor, |
|
y: Optional[Tensor] = None, |
|
exponent: float = 2, |
|
reduction: Literal["mean", "sum", "none", None] = None, |
|
zero_diagonal: Optional[bool] = None, |
|
) -> Tensor: |
|
r"""Calculate pairwise minkowski distances. |
|
|
|
.. math:: |
|
d_{minkowski}(x,y,p) = ||x - y||_p = \sqrt[p]{\sum_{d=1}^D (x_d - y_d)^p} |
|
|
|
If both :math:`x` and :math:`y` are passed in, the calculation will be performed pairwise between the rows of |
|
:math:`x` and :math:`y`. If only :math:`x` is passed in, the calculation will be performed between the rows |
|
of :math:`x`. |
|
|
|
Args: |
|
x: Tensor with shape ``[N, d]`` |
|
y: Tensor with shape ``[M, d]``, optional |
|
exponent: int or float larger than 1, exponent to which the difference between preds and target is to be raised |
|
reduction: reduction to apply along the last dimension. Choose between `'mean'`, `'sum'` |
|
(applied along column dimension) or `'none'`, `None` for no reduction |
|
zero_diagonal: if the diagonal of the distance matrix should be set to 0. If only `x` is given |
|
this defaults to `True` else if `y` is also given it defaults to `False` |
|
|
|
Returns: |
|
A ``[N,N]`` matrix of distances if only ``x`` is given, else a ``[N,M]`` matrix |
|
|
|
Example: |
|
>>> import torch |
|
>>> from torchmetrics.functional.pairwise import pairwise_minkowski_distance |
|
>>> x = torch.tensor([[2, 3], [3, 5], [5, 8]], dtype=torch.float32) |
|
>>> y = torch.tensor([[1, 0], [2, 1]], dtype=torch.float32) |
|
>>> pairwise_minkowski_distance(x, y, exponent=4) |
|
tensor([[3.0092, 2.0000], |
|
[5.0317, 4.0039], |
|
[8.1222, 7.0583]]) |
|
>>> pairwise_minkowski_distance(x, exponent=4) |
|
tensor([[0.0000, 2.0305, 5.1547], |
|
[2.0305, 0.0000, 3.1383], |
|
[5.1547, 3.1383, 0.0000]]) |
|
|
|
""" |
|
distance = _pairwise_minkowski_distance_update(x, y, exponent, zero_diagonal) |
|
return _reduce_distance_matrix(distance, reduction) |
|
|