jamtur01's picture
Upload folder using huggingface_hub
9c6594c verified
from collections.abc import Sequence
from typing import Union
import torch
from torch import Tensor
from torch.nn import functional as F # noqa: N812
def _gaussian(kernel_size: int, sigma: float, dtype: torch.dtype, device: Union[torch.device, str]) -> Tensor:
"""Compute 1D gaussian kernel.
Args:
kernel_size: size of the gaussian kernel
sigma: Standard deviation of the gaussian kernel
dtype: data type of the output tensor
device: device of the output tensor
Example:
>>> _gaussian(3, 1, torch.float, 'cpu')
tensor([[0.2741, 0.4519, 0.2741]])
"""
dist = torch.arange(start=(1 - kernel_size) / 2, end=(1 + kernel_size) / 2, step=1, dtype=dtype, device=device)
gauss = torch.exp(-torch.pow(dist / sigma, 2) / 2)
return (gauss / gauss.sum()).unsqueeze(dim=0) # (1, kernel_size)
def _gaussian_kernel_2d(
channel: int,
kernel_size: Sequence[int],
sigma: Sequence[float],
dtype: torch.dtype,
device: Union[torch.device, str],
) -> Tensor:
"""Compute 2D gaussian kernel.
Args:
channel: number of channels in the image
kernel_size: size of the gaussian kernel as a tuple (h, w)
sigma: Standard deviation of the gaussian kernel
dtype: data type of the output tensor
device: device of the output tensor
Example:
>>> _gaussian_kernel_2d(1, (5,5), (1,1), torch.float, "cpu")
tensor([[[[0.0030, 0.0133, 0.0219, 0.0133, 0.0030],
[0.0133, 0.0596, 0.0983, 0.0596, 0.0133],
[0.0219, 0.0983, 0.1621, 0.0983, 0.0219],
[0.0133, 0.0596, 0.0983, 0.0596, 0.0133],
[0.0030, 0.0133, 0.0219, 0.0133, 0.0030]]]])
"""
gaussian_kernel_x = _gaussian(kernel_size[0], sigma[0], dtype, device)
gaussian_kernel_y = _gaussian(kernel_size[1], sigma[1], dtype, device)
kernel = torch.matmul(gaussian_kernel_x.t(), gaussian_kernel_y) # (kernel_size, 1) * (1, kernel_size)
return kernel.expand(channel, 1, kernel_size[0], kernel_size[1])
def _uniform_weight_bias_conv2d(inputs: Tensor, window_size: int) -> tuple[Tensor, Tensor]:
"""Construct uniform weight and bias for a 2d convolution.
Args:
inputs: Input image
window_size: size of convolutional kernel
Return:
The weight and bias for 2d convolution
"""
kernel_weight = torch.ones(1, 1, window_size, window_size, dtype=inputs.dtype, device=inputs.device)
kernel_weight /= window_size**2
kernel_bias = torch.zeros(1, dtype=inputs.dtype, device=inputs.device)
return kernel_weight, kernel_bias
def _single_dimension_pad(inputs: Tensor, dim: int, pad: int, outer_pad: int = 0) -> Tensor:
"""Apply single-dimension reflection padding to match scipy implementation.
Args:
inputs: Input image
dim: A dimension the image should be padded over
pad: Number of pads
outer_pad: Number of outer pads
Return:
Image padded over a single dimension
"""
_max = inputs.shape[dim]
x = torch.index_select(inputs, dim, torch.arange(pad - 1, -1, -1).to(inputs.device))
y = torch.index_select(inputs, dim, torch.arange(_max - 1, _max - pad - outer_pad, -1).to(inputs.device))
return torch.cat((x, inputs, y), dim)
def _reflection_pad_2d(inputs: Tensor, pad: int, outer_pad: int = 0) -> Tensor:
"""Apply reflection padding to the input image.
Args:
inputs: Input image
pad: Number of pads
outer_pad: Number of outer pads
Return:
Padded image
"""
for dim in [2, 3]:
inputs = _single_dimension_pad(inputs, dim, pad, outer_pad)
return inputs
def _uniform_filter(inputs: Tensor, window_size: int) -> Tensor:
"""Apply uniform filter with a window of a given size over the input image.
Args:
inputs: Input image
window_size: Sliding window used for rmse calculation
Return:
Image transformed with the uniform input
"""
inputs = _reflection_pad_2d(inputs, window_size // 2, window_size % 2)
kernel_weight, kernel_bias = _uniform_weight_bias_conv2d(inputs, window_size)
# Iterate over channels
return torch.cat(
[
F.conv2d(inputs[:, channel].unsqueeze(1), kernel_weight, kernel_bias, padding=0)
for channel in range(inputs.shape[1])
],
dim=1,
)
def _gaussian_kernel_3d(
channel: int, kernel_size: Sequence[int], sigma: Sequence[float], dtype: torch.dtype, device: torch.device
) -> Tensor:
"""Compute 3D gaussian kernel.
Args:
channel: number of channels in the image
kernel_size: size of the gaussian kernel as a tuple (h, w, d)
sigma: Standard deviation of the gaussian kernel
dtype: data type of the output tensor
device: device of the output tensor
"""
gaussian_kernel_x = _gaussian(kernel_size[0], sigma[0], dtype, device)
gaussian_kernel_y = _gaussian(kernel_size[1], sigma[1], dtype, device)
gaussian_kernel_z = _gaussian(kernel_size[2], sigma[2], dtype, device)
kernel_xy = torch.matmul(gaussian_kernel_x.t(), gaussian_kernel_y) # (kernel_size, 1) * (1, kernel_size)
kernel = torch.mul(
kernel_xy.unsqueeze(-1).repeat(1, 1, kernel_size[2]),
gaussian_kernel_z.expand(kernel_size[0], kernel_size[1], kernel_size[2]),
)
return kernel.expand(channel, 1, kernel_size[0], kernel_size[1], kernel_size[2])
def _reflection_pad_3d(inputs: Tensor, pad_h: int, pad_w: int, pad_d: int) -> Tensor:
"""Reflective padding of 3d input.
Args:
inputs: tensor to pad, should be a 3D tensor of shape ``[N, C, H, W, D]``
pad_w: amount of padding in the height dimension
pad_h: amount of padding in the width dimension
pad_d: amount of padding in the depth dimension
Returns:
padded input tensor
"""
return F.pad(inputs, (pad_h, pad_h, pad_w, pad_w, pad_d, pad_d), mode="reflect")