|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
from torch import Tensor |
|
from typing_extensions import Literal |
|
|
|
from torchmetrics.utilities.checks import _check_same_shape |
|
from torchmetrics.utilities.distributed import reduce |
|
|
|
|
|
def _sam_update(preds: Tensor, target: Tensor) -> tuple[Tensor, Tensor]: |
|
"""Update and returns variables required to compute Spectral Angle Mapper. |
|
|
|
Args: |
|
preds: Predicted tensor |
|
target: Ground truth tensor |
|
|
|
""" |
|
if preds.dtype != target.dtype: |
|
raise TypeError( |
|
"Expected `preds` and `target` to have the same data type." |
|
f" Got preds: {preds.dtype} and target: {target.dtype}." |
|
) |
|
_check_same_shape(preds, target) |
|
if len(preds.shape) != 4: |
|
raise ValueError( |
|
f"Expected `preds` and `target` to have BxCxHxW shape. Got preds: {preds.shape} and target: {target.shape}." |
|
) |
|
if (preds.shape[1] <= 1) or (target.shape[1] <= 1): |
|
raise ValueError( |
|
"Expected channel dimension of `preds` and `target` to be larger than 1." |
|
f" Got preds: {preds.shape[1]} and target: {target.shape[1]}." |
|
) |
|
return preds, target |
|
|
|
|
|
def _sam_compute( |
|
preds: Tensor, |
|
target: Tensor, |
|
reduction: Literal["elementwise_mean", "sum", "none", None] = "elementwise_mean", |
|
) -> Tensor: |
|
"""Compute Spectral Angle Mapper. |
|
|
|
Args: |
|
preds: estimated image |
|
target: ground truth image |
|
reduction: a method to reduce metric score over labels. |
|
|
|
- ``'elementwise_mean'``: takes the mean (default) |
|
- ``'sum'``: takes the sum |
|
- ``'none'`` or ``None``: no reduction will be applied |
|
|
|
Example: |
|
>>> from torch import rand |
|
>>> preds = rand([16, 3, 16, 16]) |
|
>>> target = rand([16, 3, 16, 16]) |
|
>>> preds, target = _sam_update(preds, target) |
|
>>> _sam_compute(preds, target) |
|
tensor(0.5914) |
|
|
|
""" |
|
dot_product = (preds * target).sum(dim=1) |
|
preds_norm = preds.norm(dim=1) |
|
target_norm = target.norm(dim=1) |
|
sam_score = torch.clamp(dot_product / (preds_norm * target_norm), -1, 1).acos() |
|
return reduce(sam_score, reduction) |
|
|
|
|
|
def spectral_angle_mapper( |
|
preds: Tensor, |
|
target: Tensor, |
|
reduction: Literal["elementwise_mean", "sum", "none", None] = "elementwise_mean", |
|
) -> Tensor: |
|
"""Universal Spectral Angle Mapper. |
|
|
|
Args: |
|
preds: estimated image |
|
target: ground truth image |
|
reduction: a method to reduce metric score over labels. |
|
|
|
- ``'elementwise_mean'``: takes the mean (default) |
|
- ``'sum'``: takes the sum |
|
- ``'none'`` or ``None``: no reduction will be applied |
|
|
|
Return: |
|
Tensor with Spectral Angle Mapper score |
|
|
|
Raises: |
|
TypeError: |
|
If ``preds`` and ``target`` don't have the same data type. |
|
ValueError: |
|
If ``preds`` and ``target`` don't have ``BxCxHxW shape``. |
|
|
|
Example: |
|
>>> from torch import rand |
|
>>> from torchmetrics.functional.image import spectral_angle_mapper |
|
>>> preds = rand([16, 3, 16, 16],) |
|
>>> target = rand([16, 3, 16, 16]) |
|
>>> spectral_angle_mapper(preds, target) |
|
tensor(0.5914) |
|
|
|
References: |
|
[1] Roberta H. Yuhas, Alexander F. H. Goetz and Joe W. Boardman, "Discrimination among semi-arid |
|
landscape endmembers using the Spectral Angle Mapper (SAM) algorithm" in PL, Summaries of the Third Annual JPL |
|
Airborne Geoscience Workshop, vol. 1, June 1, 1992. |
|
|
|
""" |
|
preds, target = _sam_update(preds, target) |
|
return _sam_compute(preds, target, reduction) |
|
|