jamtur01's picture
Upload folder using huggingface_hub
9c6594c verified
# Copyright The Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional
import torch
from torch import Tensor, tensor
from typing_extensions import Literal
from torchmetrics.functional.classification.confusion_matrix import (
_binary_confusion_matrix_format,
_binary_confusion_matrix_tensor_validation,
_multiclass_confusion_matrix_format,
_multiclass_confusion_matrix_tensor_validation,
)
from torchmetrics.utilities.compute import normalize_logits_if_needed
from torchmetrics.utilities.data import to_onehot
from torchmetrics.utilities.enums import ClassificationTaskNoMultilabel
def _hinge_loss_compute(measure: Tensor, total: Tensor) -> Tensor:
return measure / total
def _binary_hinge_loss_arg_validation(squared: bool, ignore_index: Optional[int] = None) -> None:
if not isinstance(squared, bool):
raise ValueError(f"Expected argument `squared` to be an bool but got {squared}")
if ignore_index is not None and not isinstance(ignore_index, int):
raise ValueError(f"Expected argument `ignore_index` to either be `None` or an integer, but got {ignore_index}")
def _binary_hinge_loss_tensor_validation(preds: Tensor, target: Tensor, ignore_index: Optional[int] = None) -> None:
_binary_confusion_matrix_tensor_validation(preds, target, ignore_index)
if not preds.is_floating_point():
raise ValueError(
"Expected argument `preds` to be floating tensor with probabilities/logits"
f" but got tensor with dtype {preds.dtype}"
)
def _binary_hinge_loss_update(
preds: Tensor,
target: Tensor,
squared: bool,
) -> tuple[Tensor, Tensor]:
target = target.bool()
margin = torch.zeros_like(preds)
margin[target] = preds[target]
margin[~target] = -preds[~target]
measures = 1 - margin
measures = torch.clamp(measures, 0)
if squared:
measures = measures.pow(2)
total = tensor(target.shape[0], device=target.device)
return measures.sum(dim=0), total
def binary_hinge_loss(
preds: Tensor,
target: Tensor,
squared: bool = False,
ignore_index: Optional[int] = None,
validate_args: bool = False,
) -> Tensor:
r"""Compute the mean `Hinge loss`_ typically used for Support Vector Machines (SVMs) for binary tasks.
.. math::
\text{Hinge loss} = \max(0, 1 - y \times \hat{y})
Where :math:`y \in {-1, 1}` is the target, and :math:`\hat{y} \in \mathbb{R}` is the prediction.
Accepts the following input tensors:
- ``preds`` (float tensor): ``(N, ...)``. Preds should be a tensor containing probabilities or logits for each
observation. If preds has values outside [0,1] range we consider the input to be logits and will auto apply
sigmoid per element.
- ``target`` (int tensor): ``(N, ...)``. Target should be a tensor containing ground truth labels, and therefore
only contain {0,1} values (except if `ignore_index` is specified). The value 1 always encodes the positive class.
Additional dimension ``...`` will be flattened into the batch dimension.
Args:
preds: Tensor with predictions
target: Tensor with true labels
squared:
If True, this will compute the squared hinge loss. Otherwise, computes the regular hinge loss.
ignore_index:
Specifies a target value that is ignored and does not contribute to the metric calculation
validate_args: bool indicating if input arguments and tensors should be validated for correctness.
Set to ``False`` for faster computations.
Example:
>>> from torch import tensor
>>> from torchmetrics.functional.classification import binary_hinge_loss
>>> preds = tensor([0.25, 0.25, 0.55, 0.75, 0.75])
>>> target = tensor([0, 0, 1, 1, 1])
>>> binary_hinge_loss(preds, target)
tensor(0.6900)
>>> binary_hinge_loss(preds, target, squared=True)
tensor(0.6905)
"""
if validate_args:
_binary_hinge_loss_arg_validation(squared, ignore_index)
_binary_hinge_loss_tensor_validation(preds, target, ignore_index)
preds, target = _binary_confusion_matrix_format(
preds, target, threshold=0.0, ignore_index=ignore_index, convert_to_labels=False
)
measures, total = _binary_hinge_loss_update(preds, target, squared)
return _hinge_loss_compute(measures, total)
def _multiclass_hinge_loss_arg_validation(
num_classes: int,
squared: bool = False,
multiclass_mode: Literal["crammer-singer", "one-vs-all"] = "crammer-singer",
ignore_index: Optional[int] = None,
) -> None:
_binary_hinge_loss_arg_validation(squared, ignore_index)
if not isinstance(num_classes, int) or num_classes < 2:
raise ValueError(f"Expected argument `num_classes` to be an integer larger than 1, but got {num_classes}")
allowed_mm = ("crammer-singer", "one-vs-all")
if multiclass_mode not in allowed_mm:
raise ValueError(f"Expected argument `multiclass_mode` to be one of {allowed_mm}, but got {multiclass_mode}.")
def _multiclass_hinge_loss_tensor_validation(
preds: Tensor, target: Tensor, num_classes: int, ignore_index: Optional[int] = None
) -> None:
_multiclass_confusion_matrix_tensor_validation(preds, target, num_classes, ignore_index)
if not preds.is_floating_point():
raise ValueError(
"Expected argument `preds` to be floating tensor with probabilities/logits"
f" but got tensor with dtype {preds.dtype}"
)
def _multiclass_hinge_loss_update(
preds: Tensor,
target: Tensor,
squared: bool,
multiclass_mode: Literal["crammer-singer", "one-vs-all"] = "crammer-singer",
) -> tuple[Tensor, Tensor]:
preds = normalize_logits_if_needed(preds, "softmax")
target = to_onehot(target, max(2, preds.shape[1])).bool()
if multiclass_mode == "crammer-singer":
margin = preds[target]
margin -= torch.max(preds[~target].view(preds.shape[0], -1), dim=1)[0]
else:
target = target.bool()
margin = torch.zeros_like(preds)
margin[target] = preds[target]
margin[~target] = -preds[~target]
measures = 1 - margin
measures = torch.clamp(measures, 0)
if squared:
measures = measures.pow(2)
total = tensor(target.shape[0], device=target.device)
return measures.sum(dim=0), total
def multiclass_hinge_loss(
preds: Tensor,
target: Tensor,
num_classes: int,
squared: bool = False,
multiclass_mode: Literal["crammer-singer", "one-vs-all"] = "crammer-singer",
ignore_index: Optional[int] = None,
validate_args: bool = False,
) -> Tensor:
r"""Compute the mean `Hinge loss`_ typically used for Support Vector Machines (SVMs) for multiclass tasks.
The metric can be computed in two ways. Either, the definition by Crammer and Singer is used:
.. math::
\text{Hinge loss} = \max\left(0, 1 - \hat{y}_y + \max_{i \ne y} (\hat{y}_i)\right)
Where :math:`y \in {0, ..., \mathrm{C}}` is the target class (where :math:`\mathrm{C}` is the number of classes),
and :math:`\hat{y} \in \mathbb{R}^\mathrm{C}` is the predicted output per class. Alternatively, the metric can
also be computed in one-vs-all approach, where each class is valued against all other classes in a binary fashion.
Accepts the following input tensors:
- ``preds`` (float tensor): ``(N, C, ...)``. Preds should be a tensor containing probabilities or logits for each
observation. If preds has values outside [0,1] range we consider the input to be logits and will auto apply
softmax per sample.
- ``target`` (int tensor): ``(N, ...)``. Target should be a tensor containing ground truth labels, and therefore
only contain values in the [0, n_classes-1] range (except if `ignore_index` is specified).
Additional dimension ``...`` will be flattened into the batch dimension.
Args:
preds: Tensor with predictions
target: Tensor with true labels
num_classes: Integer specifying the number of classes
squared:
If True, this will compute the squared hinge loss. Otherwise, computes the regular hinge loss.
multiclass_mode:
Determines how to compute the metric
ignore_index:
Specifies a target value that is ignored and does not contribute to the metric calculation
validate_args: bool indicating if input arguments and tensors should be validated for correctness.
Set to ``False`` for faster computations.
Example:
>>> from torch import tensor
>>> from torchmetrics.functional.classification import multiclass_hinge_loss
>>> preds = tensor([[0.25, 0.20, 0.55],
... [0.55, 0.05, 0.40],
... [0.10, 0.30, 0.60],
... [0.90, 0.05, 0.05]])
>>> target = tensor([0, 1, 2, 0])
>>> multiclass_hinge_loss(preds, target, num_classes=3)
tensor(0.9125)
>>> multiclass_hinge_loss(preds, target, num_classes=3, squared=True)
tensor(1.1131)
>>> multiclass_hinge_loss(preds, target, num_classes=3, multiclass_mode='one-vs-all')
tensor([0.8750, 1.1250, 1.1000])
"""
if validate_args:
_multiclass_hinge_loss_arg_validation(num_classes, squared, multiclass_mode, ignore_index)
_multiclass_hinge_loss_tensor_validation(preds, target, num_classes, ignore_index)
preds, target = _multiclass_confusion_matrix_format(preds, target, ignore_index, convert_to_labels=False)
measures, total = _multiclass_hinge_loss_update(preds, target, squared, multiclass_mode)
return _hinge_loss_compute(measures, total)
def hinge_loss(
preds: Tensor,
target: Tensor,
task: Literal["binary", "multiclass"],
num_classes: Optional[int] = None,
squared: bool = False,
multiclass_mode: Literal["crammer-singer", "one-vs-all"] = "crammer-singer",
ignore_index: Optional[int] = None,
validate_args: bool = True,
) -> Tensor:
r"""Compute the mean `Hinge loss`_ typically used for Support Vector Machines (SVMs).
This function is a simple wrapper to get the task specific versions of this metric, which is done by setting the
``task`` argument to either ``'binary'`` or ``'multiclass'``. See the documentation of
:func:`~torchmetrics.functional.classification.binary_hinge_loss` and
:func:`~torchmetrics.functional.classification.multiclass_hinge_loss` for the specific details of
each argument influence and examples.
Legacy Example:
>>> from torch import tensor
>>> target = tensor([0, 1, 1])
>>> preds = tensor([0.5, 0.7, 0.1])
>>> hinge_loss(preds, target, task="binary")
tensor(0.9000)
>>> target = tensor([0, 1, 2])
>>> preds = tensor([[-1.0, 0.9, 0.2], [0.5, -1.1, 0.8], [2.2, -0.5, 0.3]])
>>> hinge_loss(preds, target, task="multiclass", num_classes=3)
tensor(1.5551)
>>> target = tensor([0, 1, 2])
>>> preds = tensor([[-1.0, 0.9, 0.2], [0.5, -1.1, 0.8], [2.2, -0.5, 0.3]])
>>> hinge_loss(preds, target, task="multiclass", num_classes=3, multiclass_mode="one-vs-all")
tensor([1.3743, 1.1945, 1.2359])
"""
task = ClassificationTaskNoMultilabel.from_str(task)
if task == ClassificationTaskNoMultilabel.BINARY:
return binary_hinge_loss(preds, target, squared, ignore_index, validate_args)
if task == ClassificationTaskNoMultilabel.MULTICLASS:
if not isinstance(num_classes, int):
raise ValueError(f"`num_classes` is expected to be `int` but `{type(num_classes)} was passed.`")
return multiclass_hinge_loss(preds, target, num_classes, squared, multiclass_mode, ignore_index, validate_args)
raise ValueError(f"Not handled value: {task}")