jamtur01's picture
Upload folder using huggingface_hub
9c6594c verified
# Copyright The Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from torch import Tensor
from torchmetrics.functional.audio.sdr import scale_invariant_signal_distortion_ratio
from torchmetrics.utilities.checks import _check_same_shape
def signal_noise_ratio(preds: Tensor, target: Tensor, zero_mean: bool = False) -> Tensor:
r"""Calculate `Signal-to-noise ratio`_ (SNR_) meric for evaluating quality of audio.
.. math::
\text{SNR} = \frac{P_{signal}}{P_{noise}}
where :math:`P` denotes the power of each signal. The SNR metric compares the level of the desired signal to
the level of background noise. Therefore, a high value of SNR means that the audio is clear.
Args:
preds: float tensor with shape ``(...,time)``
target: float tensor with shape ``(...,time)``
zero_mean: if to zero mean target and preds or not
Returns:
Float tensor with shape ``(...,)`` of SNR values per sample
Raises:
RuntimeError:
If ``preds`` and ``target`` does not have the same shape
Example:
>>> from torchmetrics.functional.audio import signal_noise_ratio
>>> target = torch.tensor([3.0, -0.5, 2.0, 7.0])
>>> preds = torch.tensor([2.5, 0.0, 2.0, 8.0])
>>> signal_noise_ratio(preds, target)
tensor(16.1805)
"""
_check_same_shape(preds, target)
eps = torch.finfo(preds.dtype).eps
if zero_mean:
target = target - torch.mean(target, dim=-1, keepdim=True)
preds = preds - torch.mean(preds, dim=-1, keepdim=True)
noise = target - preds
snr_value = (torch.sum(target**2, dim=-1) + eps) / (torch.sum(noise**2, dim=-1) + eps)
return 10 * torch.log10(snr_value)
def scale_invariant_signal_noise_ratio(preds: Tensor, target: Tensor) -> Tensor:
"""`Scale-invariant signal-to-noise ratio`_ (SI-SNR).
Args:
preds: float tensor with shape ``(...,time)``
target: float tensor with shape ``(...,time)``
Returns:
Float tensor with shape ``(...,)`` of SI-SNR values per sample
Raises:
RuntimeError:
If ``preds`` and ``target`` does not have the same shape
Example:
>>> import torch
>>> from torchmetrics.functional.audio import scale_invariant_signal_noise_ratio
>>> target = torch.tensor([3.0, -0.5, 2.0, 7.0])
>>> preds = torch.tensor([2.5, 0.0, 2.0, 8.0])
>>> scale_invariant_signal_noise_ratio(preds, target)
tensor(15.0918)
"""
return scale_invariant_signal_distortion_ratio(preds=preds, target=target, zero_mean=True)
def complex_scale_invariant_signal_noise_ratio(preds: Tensor, target: Tensor, zero_mean: bool = False) -> Tensor:
"""`Complex scale-invariant signal-to-noise ratio`_ (C-SI-SNR).
Args:
preds: real float tensor with shape ``(...,frequency,time,2)`` or complex float tensor with
shape ``(..., frequency,time)``
target: real float tensor with shape ``(...,frequency,time,2)`` or complex float tensor with
shape ``(..., frequency,time)``
zero_mean: When set to True, the mean of all signals is subtracted prior to computation of the metrics
Returns:
Float tensor with shape ``(...,)`` of C-SI-SNR values per sample
Raises:
RuntimeError:
If ``preds`` is not the shape (...,frequency,time,2) (after being converted to real if it is complex).
If ``preds`` and ``target`` does not have the same shape.
Example:
>>> from torch import randn
>>> from torchmetrics.functional.audio import complex_scale_invariant_signal_noise_ratio
>>> preds = randn((1,257,100,2))
>>> target = randn((1,257,100,2))
>>> complex_scale_invariant_signal_noise_ratio(preds, target)
tensor([-38.8832])
"""
if preds.is_complex():
preds = torch.view_as_real(preds)
if target.is_complex():
target = torch.view_as_real(target)
if (preds.ndim < 3 or preds.shape[-1] != 2) or (target.ndim < 3 or target.shape[-1] != 2):
raise RuntimeError(
"Predictions and targets are expected to have the shape (..., frequency, time, 2),"
f" but got {preds.shape} and {target.shape}."
)
preds = preds.reshape(*preds.shape[:-3], -1)
target = target.reshape(*target.shape[:-3], -1)
return scale_invariant_signal_distortion_ratio(preds=preds, target=target, zero_mean=zero_mean)