|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from collections.abc import Sequence |
|
from typing import Any, Optional, Union |
|
|
|
from torch import Tensor |
|
from typing_extensions import Literal |
|
|
|
from torchmetrics.classification.base import _ClassificationTaskWrapper |
|
from torchmetrics.classification.stat_scores import BinaryStatScores, MulticlassStatScores, MultilabelStatScores |
|
from torchmetrics.functional.classification.precision_recall import ( |
|
_precision_recall_reduce, |
|
) |
|
from torchmetrics.metric import Metric |
|
from torchmetrics.utilities.enums import ClassificationTask |
|
from torchmetrics.utilities.imports import _MATPLOTLIB_AVAILABLE |
|
from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE |
|
|
|
if not _MATPLOTLIB_AVAILABLE: |
|
__doctest_skip__ = [ |
|
"BinaryPrecision.plot", |
|
"MulticlassPrecision.plot", |
|
"MultilabelPrecision.plot", |
|
"BinaryRecall.plot", |
|
"MulticlassRecall.plot", |
|
"MultilabelRecall.plot", |
|
] |
|
|
|
|
|
class BinaryPrecision(BinaryStatScores): |
|
r"""Compute `Precision`_ for binary tasks. |
|
|
|
.. math:: \text{Precision} = \frac{\text{TP}}{\text{TP} + \text{FP}} |
|
|
|
Where :math:`\text{TP}` and :math:`\text{FP}` represent the number of true positives and false positives |
|
respectively. The metric is only proper defined when :math:`\text{TP} + \text{FP} \neq 0`. If this case is |
|
encountered a score of `zero_division` (0 or 1, default is 0) is returned. |
|
|
|
As input to ``forward`` and ``update`` the metric accepts the following input: |
|
|
|
- ``preds`` (:class:`~torch.Tensor`): A int or float tensor of shape ``(N, ...)``. If preds is a floating point |
|
tensor with values outside [0,1] range we consider the input to be logits and will auto apply sigmoid per |
|
element. Additionally, we convert to int tensor with thresholding using the value in ``threshold``. |
|
- ``target`` (:class:`~torch.Tensor`): An int tensor of shape ``(N, ...)``. |
|
|
|
As output to ``forward`` and ``compute`` the metric returns the following output: |
|
|
|
- ``bp`` (:class:`~torch.Tensor`): If ``multidim_average`` is set to ``global``, the metric returns a scalar |
|
value. If ``multidim_average`` is set to ``samplewise``, the metric returns ``(N,)`` vector consisting of a |
|
scalar value per sample. |
|
|
|
If ``multidim_average`` is set to ``samplewise`` we expect at least one additional dimension ``...`` to be present, |
|
which the reduction will then be applied over instead of the sample dimension ``N``. |
|
|
|
Args: |
|
threshold: Threshold for transforming probability to binary {0,1} predictions |
|
multidim_average: |
|
Defines how additionally dimensions ``...`` should be handled. Should be one of the following: |
|
|
|
- ``global``: Additional dimensions are flatted along the batch dimension |
|
- ``samplewise``: Statistic will be calculated independently for each sample on the ``N`` axis. |
|
The statistics in this case are calculated over the additional dimensions. |
|
|
|
ignore_index: |
|
Specifies a target value that is ignored and does not contribute to the metric calculation |
|
validate_args: bool indicating if input arguments and tensors should be validated for correctness. |
|
Set to ``False`` for faster computations. |
|
zero_division: Should be `0` or `1`. The value returned when :math:`\text{TP} + \text{FP} = 0`. |
|
|
|
Example (preds is int tensor): |
|
>>> from torch import tensor |
|
>>> from torchmetrics.classification import BinaryPrecision |
|
>>> target = tensor([0, 1, 0, 1, 0, 1]) |
|
>>> preds = tensor([0, 0, 1, 1, 0, 1]) |
|
>>> metric = BinaryPrecision() |
|
>>> metric(preds, target) |
|
tensor(0.6667) |
|
|
|
Example (preds is float tensor): |
|
>>> from torchmetrics.classification import BinaryPrecision |
|
>>> target = tensor([0, 1, 0, 1, 0, 1]) |
|
>>> preds = tensor([0.11, 0.22, 0.84, 0.73, 0.33, 0.92]) |
|
>>> metric = BinaryPrecision() |
|
>>> metric(preds, target) |
|
tensor(0.6667) |
|
|
|
Example (multidim tensors): |
|
>>> from torchmetrics.classification import BinaryPrecision |
|
>>> target = tensor([[[0, 1], [1, 0], [0, 1]], [[1, 1], [0, 0], [1, 0]]]) |
|
>>> preds = tensor([[[0.59, 0.91], [0.91, 0.99], [0.63, 0.04]], |
|
... [[0.38, 0.04], [0.86, 0.780], [0.45, 0.37]]]) |
|
>>> metric = BinaryPrecision(multidim_average='samplewise') |
|
>>> metric(preds, target) |
|
tensor([0.4000, 0.0000]) |
|
|
|
""" |
|
|
|
is_differentiable: bool = False |
|
higher_is_better: Optional[bool] = True |
|
full_state_update: bool = False |
|
plot_lower_bound: float = 0.0 |
|
plot_upper_bound: float = 1.0 |
|
|
|
def compute(self) -> Tensor: |
|
"""Compute metric.""" |
|
tp, fp, tn, fn = self._final_state() |
|
return _precision_recall_reduce( |
|
"precision", |
|
tp, |
|
fp, |
|
tn, |
|
fn, |
|
average="binary", |
|
multidim_average=self.multidim_average, |
|
zero_division=self.zero_division, |
|
) |
|
|
|
def plot( |
|
self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None |
|
) -> _PLOT_OUT_TYPE: |
|
"""Plot a single or multiple values from the metric. |
|
|
|
Args: |
|
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results. |
|
If no value is provided, will automatically call `metric.compute` and plot that result. |
|
ax: An matplotlib axis object. If provided will add plot to that axis |
|
|
|
Returns: |
|
Figure object and Axes object |
|
|
|
Raises: |
|
ModuleNotFoundError: |
|
If `matplotlib` is not installed |
|
|
|
.. plot:: |
|
:scale: 75 |
|
|
|
>>> from torch import rand, randint |
|
>>> # Example plotting a single value |
|
>>> from torchmetrics.classification import BinaryPrecision |
|
>>> metric = BinaryPrecision() |
|
>>> metric.update(rand(10), randint(2,(10,))) |
|
>>> fig_, ax_ = metric.plot() |
|
|
|
.. plot:: |
|
:scale: 75 |
|
|
|
>>> from torch import rand, randint |
|
>>> # Example plotting multiple values |
|
>>> from torchmetrics.classification import BinaryPrecision |
|
>>> metric = BinaryPrecision() |
|
>>> values = [ ] |
|
>>> for _ in range(10): |
|
... values.append(metric(rand(10), randint(2,(10,)))) |
|
>>> fig_, ax_ = metric.plot(values) |
|
|
|
""" |
|
return self._plot(val, ax) |
|
|
|
|
|
class MulticlassPrecision(MulticlassStatScores): |
|
r"""Compute `Precision`_ for multiclass tasks. |
|
|
|
.. math:: \text{Precision} = \frac{\text{TP}}{\text{TP} + \text{FP}} |
|
|
|
Where :math:`\text{TP}` and :math:`\text{FP}` represent the number of true positives and false positives |
|
respectively. The metric is only proper defined when :math:`\text{TP} + \text{FP} \neq 0`. If this case is |
|
encountered for any class, the metric for that class will be set to `zero_division` (0 or 1, default is 0) and |
|
the overall metric may therefore be affected in turn. |
|
|
|
As input to ``forward`` and ``update`` the metric accepts the following input: |
|
|
|
- ``preds`` (:class:`~torch.Tensor`): An int tensor of shape ``(N, ...)`` or float tensor of shape ``(N, C, ..)``. |
|
If preds is a floating point we apply ``torch.argmax`` along the ``C`` dimension to automatically convert |
|
probabilities/logits into an int tensor. |
|
- ``target`` (:class:`~torch.Tensor`): An int tensor of shape ``(N, ...)``. |
|
|
|
|
|
As output to ``forward`` and ``compute`` the metric returns the following output: |
|
|
|
- ``mcp`` (:class:`~torch.Tensor`): The returned shape depends on the ``average`` and ``multidim_average`` |
|
arguments: |
|
|
|
- If ``multidim_average`` is set to ``global``: |
|
|
|
- If ``average='micro'/'macro'/'weighted'``, the output will be a scalar tensor |
|
- If ``average=None/'none'``, the shape will be ``(C,)`` |
|
|
|
- If ``multidim_average`` is set to ``samplewise``: |
|
|
|
- If ``average='micro'/'macro'/'weighted'``, the shape will be ``(N,)`` |
|
- If ``average=None/'none'``, the shape will be ``(N, C)`` |
|
|
|
If ``multidim_average`` is set to ``samplewise`` we expect at least one additional dimension ``...`` to be present, |
|
which the reduction will then be applied over instead of the sample dimension ``N``. |
|
|
|
Args: |
|
num_classes: Integer specifying the number of classes |
|
average: |
|
Defines the reduction that is applied over labels. Should be one of the following: |
|
|
|
- ``micro``: Sum statistics over all labels |
|
- ``macro``: Calculate statistics for each label and average them |
|
- ``weighted``: calculates statistics for each label and computes weighted average using their support |
|
- ``"none"`` or ``None``: calculates statistic for each label and applies no reduction |
|
top_k: |
|
Number of highest probability or logit score predictions considered to find the correct label. |
|
Only works when ``preds`` contain probabilities/logits. |
|
multidim_average: |
|
Defines how additionally dimensions ``...`` should be handled. Should be one of the following: |
|
|
|
- ``global``: Additional dimensions are flatted along the batch dimension |
|
- ``samplewise``: Statistic will be calculated independently for each sample on the ``N`` axis. |
|
The statistics in this case are calculated over the additional dimensions. |
|
|
|
ignore_index: |
|
Specifies a target value that is ignored and does not contribute to the metric calculation |
|
validate_args: bool indicating if input arguments and tensors should be validated for correctness. |
|
Set to ``False`` for faster computations. |
|
zero_division: Should be `0` or `1`. The value returned when :math:`\text{TP} + \text{FP} = 0`. |
|
|
|
Example (preds is int tensor): |
|
>>> from torch import tensor |
|
>>> from torchmetrics.classification import MulticlassPrecision |
|
>>> target = tensor([2, 1, 0, 0]) |
|
>>> preds = tensor([2, 1, 0, 1]) |
|
>>> metric = MulticlassPrecision(num_classes=3) |
|
>>> metric(preds, target) |
|
tensor(0.8333) |
|
>>> mcp = MulticlassPrecision(num_classes=3, average=None) |
|
>>> mcp(preds, target) |
|
tensor([1.0000, 0.5000, 1.0000]) |
|
|
|
Example (preds is float tensor): |
|
>>> from torchmetrics.classification import MulticlassPrecision |
|
>>> target = tensor([2, 1, 0, 0]) |
|
>>> preds = tensor([[0.16, 0.26, 0.58], |
|
... [0.22, 0.61, 0.17], |
|
... [0.71, 0.09, 0.20], |
|
... [0.05, 0.82, 0.13]]) |
|
>>> metric = MulticlassPrecision(num_classes=3) |
|
>>> metric(preds, target) |
|
tensor(0.8333) |
|
>>> mcp = MulticlassPrecision(num_classes=3, average=None) |
|
>>> mcp(preds, target) |
|
tensor([1.0000, 0.5000, 1.0000]) |
|
|
|
Example (multidim tensors): |
|
>>> from torchmetrics.classification import MulticlassPrecision |
|
>>> target = tensor([[[0, 1], [2, 1], [0, 2]], [[1, 1], [2, 0], [1, 2]]]) |
|
>>> preds = tensor([[[0, 2], [2, 0], [0, 1]], [[2, 2], [2, 1], [1, 0]]]) |
|
>>> metric = MulticlassPrecision(num_classes=3, multidim_average='samplewise') |
|
>>> metric(preds, target) |
|
tensor([0.3889, 0.2778]) |
|
>>> mcp = MulticlassPrecision(num_classes=3, multidim_average='samplewise', average=None) |
|
>>> mcp(preds, target) |
|
tensor([[0.6667, 0.0000, 0.5000], |
|
[0.0000, 0.5000, 0.3333]]) |
|
|
|
""" |
|
|
|
is_differentiable: bool = False |
|
higher_is_better: Optional[bool] = True |
|
full_state_update: bool = False |
|
plot_lower_bound: float = 0.0 |
|
plot_upper_bound: float = 1.0 |
|
plot_legend_name: str = "Class" |
|
|
|
def compute(self) -> Tensor: |
|
"""Compute metric.""" |
|
tp, fp, tn, fn = self._final_state() |
|
return _precision_recall_reduce( |
|
"precision", |
|
tp, |
|
fp, |
|
tn, |
|
fn, |
|
average=self.average, |
|
multidim_average=self.multidim_average, |
|
top_k=self.top_k, |
|
zero_division=self.zero_division, |
|
) |
|
|
|
def plot( |
|
self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None |
|
) -> _PLOT_OUT_TYPE: |
|
"""Plot a single or multiple values from the metric. |
|
|
|
Args: |
|
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results. |
|
If no value is provided, will automatically call `metric.compute` and plot that result. |
|
ax: An matplotlib axis object. If provided will add plot to that axis |
|
|
|
Returns: |
|
Figure object and Axes object |
|
|
|
Raises: |
|
ModuleNotFoundError: |
|
If `matplotlib` is not installed |
|
|
|
.. plot:: |
|
:scale: 75 |
|
|
|
>>> from torch import randint |
|
>>> # Example plotting a single value per class |
|
>>> from torchmetrics.classification import MulticlassPrecision |
|
>>> metric = MulticlassPrecision(num_classes=3, average=None) |
|
>>> metric.update(randint(3, (20,)), randint(3, (20,))) |
|
>>> fig_, ax_ = metric.plot() |
|
|
|
.. plot:: |
|
:scale: 75 |
|
|
|
>>> from torch import randint |
|
>>> # Example plotting a multiple values per class |
|
>>> from torchmetrics.classification import MulticlassPrecision |
|
>>> metric = MulticlassPrecision(num_classes=3, average=None) |
|
>>> values = [] |
|
>>> for _ in range(20): |
|
... values.append(metric(randint(3, (20,)), randint(3, (20,)))) |
|
>>> fig_, ax_ = metric.plot(values) |
|
|
|
""" |
|
return self._plot(val, ax) |
|
|
|
|
|
class MultilabelPrecision(MultilabelStatScores): |
|
r"""Compute `Precision`_ for multilabel tasks. |
|
|
|
.. math:: \text{Precision} = \frac{\text{TP}}{\text{TP} + \text{FP}} |
|
|
|
Where :math:`\text{TP}` and :math:`\text{FP}` represent the number of true positives and false positives |
|
respectively. The metric is only proper defined when :math:`\text{TP} + \text{FP} \neq 0`. If this case is |
|
encountered for any label, the metric for that label will be set to `zero_division` (0 or 1, default is 0) and |
|
the overall metric may therefore be affected in turn. |
|
|
|
As input to ``forward`` and ``update`` the metric accepts the following input: |
|
|
|
- ``preds`` (:class:`~torch.Tensor`): An int tensor or float tensor of shape ``(N, C, ...)``. |
|
If preds is a floating point tensor with values outside [0,1] range we consider the input to be logits and |
|
will auto apply sigmoid per element. Additionally, we convert to int tensor with thresholding using the value |
|
in ``threshold``. |
|
- ``target`` (:class:`~torch.Tensor`): An int tensor of shape ``(N, C, ...)``. |
|
|
|
As output to ``forward`` and ``compute`` the metric returns the following output: |
|
|
|
- ``mlp`` (:class:`~torch.Tensor`): The returned shape depends on the ``average`` and ``multidim_average`` |
|
arguments: |
|
|
|
- If ``multidim_average`` is set to ``global``: |
|
|
|
- If ``average='micro'/'macro'/'weighted'``, the output will be a scalar tensor |
|
- If ``average=None/'none'``, the shape will be ``(C,)`` |
|
|
|
- If ``multidim_average`` is set to ``samplewise``: |
|
|
|
- If ``average='micro'/'macro'/'weighted'``, the shape will be ``(N,)`` |
|
- If ``average=None/'none'``, the shape will be ``(N, C)`` |
|
|
|
If ``multidim_average`` is set to ``samplewise`` we expect at least one additional dimension ``...`` to be present, |
|
which the reduction will then be applied over instead of the sample dimension ``N``. |
|
|
|
Args: |
|
num_labels: Integer specifying the number of labels |
|
threshold: Threshold for transforming probability to binary (0,1) predictions |
|
average: |
|
Defines the reduction that is applied over labels. Should be one of the following: |
|
|
|
- ``micro``: Sum statistics over all labels |
|
- ``macro``: Calculate statistics for each label and average them |
|
- ``weighted``: calculates statistics for each label and computes weighted average using their support |
|
- ``"none"`` or ``None``: calculates statistic for each label and applies no reduction |
|
|
|
multidim_average: |
|
Defines how additionally dimensions ``...`` should be handled. Should be one of the following: |
|
|
|
- ``global``: Additional dimensions are flatted along the batch dimension |
|
- ``samplewise``: Statistic will be calculated independently for each sample on the ``N`` axis. |
|
The statistics in this case are calculated over the additional dimensions. |
|
|
|
ignore_index: |
|
Specifies a target value that is ignored and does not contribute to the metric calculation |
|
validate_args: bool indicating if input arguments and tensors should be validated for correctness. |
|
Set to ``False`` for faster computations. |
|
zero_division: Should be `0` or `1`. The value returned when :math:`\text{TP} + \text{FP} = 0`. |
|
|
|
Example (preds is int tensor): |
|
>>> from torch import tensor |
|
>>> from torchmetrics.classification import MultilabelPrecision |
|
>>> target = tensor([[0, 1, 0], [1, 0, 1]]) |
|
>>> preds = tensor([[0, 0, 1], [1, 0, 1]]) |
|
>>> metric = MultilabelPrecision(num_labels=3) |
|
>>> metric(preds, target) |
|
tensor(0.5000) |
|
>>> mlp = MultilabelPrecision(num_labels=3, average=None) |
|
>>> mlp(preds, target) |
|
tensor([1.0000, 0.0000, 0.5000]) |
|
|
|
Example (preds is float tensor): |
|
>>> from torchmetrics.classification import MultilabelPrecision |
|
>>> target = tensor([[0, 1, 0], [1, 0, 1]]) |
|
>>> preds = tensor([[0.11, 0.22, 0.84], [0.73, 0.33, 0.92]]) |
|
>>> metric = MultilabelPrecision(num_labels=3) |
|
>>> metric(preds, target) |
|
tensor(0.5000) |
|
>>> mlp = MultilabelPrecision(num_labels=3, average=None) |
|
>>> mlp(preds, target) |
|
tensor([1.0000, 0.0000, 0.5000]) |
|
|
|
Example (multidim tensors): |
|
>>> from torchmetrics.classification import MultilabelPrecision |
|
>>> target = tensor([[[0, 1], [1, 0], [0, 1]], [[1, 1], [0, 0], [1, 0]]]) |
|
>>> preds = tensor([[[0.59, 0.91], [0.91, 0.99], [0.63, 0.04]], |
|
... [[0.38, 0.04], [0.86, 0.780], [0.45, 0.37]]]) |
|
>>> metric = MultilabelPrecision(num_labels=3, multidim_average='samplewise') |
|
>>> metric(preds, target) |
|
tensor([0.3333, 0.0000]) |
|
>>> mlp = MultilabelPrecision(num_labels=3, multidim_average='samplewise', average=None) |
|
>>> mlp(preds, target) |
|
tensor([[0.5000, 0.5000, 0.0000], |
|
[0.0000, 0.0000, 0.0000]]) |
|
|
|
""" |
|
|
|
is_differentiable: bool = False |
|
higher_is_better: Optional[bool] = True |
|
full_state_update: bool = False |
|
plot_lower_bound: float = 0.0 |
|
plot_upper_bound: float = 1.0 |
|
plot_legend_name: str = "Label" |
|
|
|
def compute(self) -> Tensor: |
|
"""Compute metric.""" |
|
tp, fp, tn, fn = self._final_state() |
|
return _precision_recall_reduce( |
|
"precision", |
|
tp, |
|
fp, |
|
tn, |
|
fn, |
|
average=self.average, |
|
multidim_average=self.multidim_average, |
|
multilabel=True, |
|
zero_division=self.zero_division, |
|
) |
|
|
|
def plot( |
|
self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None |
|
) -> _PLOT_OUT_TYPE: |
|
"""Plot a single or multiple values from the metric. |
|
|
|
Args: |
|
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results. |
|
If no value is provided, will automatically call `metric.compute` and plot that result. |
|
ax: An matplotlib axis object. If provided will add plot to that axis |
|
|
|
Returns: |
|
Figure object and Axes object |
|
|
|
Raises: |
|
ModuleNotFoundError: |
|
If `matplotlib` is not installed |
|
|
|
.. plot:: |
|
:scale: 75 |
|
|
|
>>> from torch import rand, randint |
|
>>> # Example plotting a single value |
|
>>> from torchmetrics.classification import MultilabelPrecision |
|
>>> metric = MultilabelPrecision(num_labels=3) |
|
>>> metric.update(randint(2, (20, 3)), randint(2, (20, 3))) |
|
>>> fig_, ax_ = metric.plot() |
|
|
|
.. plot:: |
|
:scale: 75 |
|
|
|
>>> from torch import rand, randint |
|
>>> # Example plotting multiple values |
|
>>> from torchmetrics.classification import MultilabelPrecision |
|
>>> metric = MultilabelPrecision(num_labels=3) |
|
>>> values = [ ] |
|
>>> for _ in range(10): |
|
... values.append(metric(randint(2, (20, 3)), randint(2, (20, 3)))) |
|
>>> fig_, ax_ = metric.plot(values) |
|
|
|
""" |
|
return self._plot(val, ax) |
|
|
|
|
|
class BinaryRecall(BinaryStatScores): |
|
r"""Compute `Recall`_ for binary tasks. |
|
|
|
.. math:: \text{Recall} = \frac{\text{TP}}{\text{TP} + \text{FN}} |
|
|
|
Where :math:`\text{TP}` and :math:`\text{FN}` represent the number of true positives and false negatives |
|
respectively. The metric is only proper defined when :math:`\text{TP} + \text{FN} \neq 0`. If this case is |
|
encountered a score of `zero_division` (0 or 1, default is 0) is returned. |
|
|
|
As input to ``forward`` and ``update`` the metric accepts the following input: |
|
|
|
- ``preds`` (:class:`~torch.Tensor`): An int tensor or float tensor of shape ``(N, ...)``. If preds is a |
|
floating point tensor with values outside [0,1] range we consider the input to be logits and will auto apply |
|
sigmoid per element. Additionally, we convert to int tensor with thresholding using the value in ``threshold``. |
|
- ``target`` (:class:`~torch.Tensor`): An int tensor of shape ``(N, ...)`` |
|
|
|
As output to ``forward`` and ``compute`` the metric returns the following output: |
|
|
|
- ``br`` (:class:`~torch.Tensor`): If ``multidim_average`` is set to ``global``, the metric returns a scalar |
|
value. If ``multidim_average`` is set to ``samplewise``, the metric returns ``(N,)`` vector consisting of |
|
a scalar value per sample. |
|
|
|
If ``multidim_average`` is set to ``samplewise`` we expect at least one additional dimension ``...`` to be present, |
|
which the reduction will then be applied over instead of the sample dimension ``N``. |
|
|
|
Args: |
|
threshold: Threshold for transforming probability to binary {0,1} predictions |
|
multidim_average: |
|
Defines how additionally dimensions ``...`` should be handled. Should be one of the following: |
|
|
|
- ``global``: Additional dimensions are flatted along the batch dimension |
|
- ``samplewise``: Statistic will be calculated independently for each sample on the ``N`` axis. |
|
The statistics in this case are calculated over the additional dimensions. |
|
|
|
ignore_index: |
|
Specifies a target value that is ignored and does not contribute to the metric calculation |
|
validate_args: bool indicating if input arguments and tensors should be validated for correctness. |
|
Set to ``False`` for faster computations. |
|
zero_division: Should be `0` or `1`. The value returned when :math:`\text{TP} + \text{FN} = 0`. |
|
|
|
Example (preds is int tensor): |
|
>>> from torch import tensor |
|
>>> from torchmetrics.classification import BinaryRecall |
|
>>> target = tensor([0, 1, 0, 1, 0, 1]) |
|
>>> preds = tensor([0, 0, 1, 1, 0, 1]) |
|
>>> metric = BinaryRecall() |
|
>>> metric(preds, target) |
|
tensor(0.6667) |
|
|
|
Example (preds is float tensor): |
|
>>> from torchmetrics.classification import BinaryRecall |
|
>>> target = tensor([0, 1, 0, 1, 0, 1]) |
|
>>> preds = tensor([0.11, 0.22, 0.84, 0.73, 0.33, 0.92]) |
|
>>> metric = BinaryRecall() |
|
>>> metric(preds, target) |
|
tensor(0.6667) |
|
|
|
Example (multidim tensors): |
|
>>> from torchmetrics.classification import BinaryRecall |
|
>>> target = tensor([[[0, 1], [1, 0], [0, 1]], [[1, 1], [0, 0], [1, 0]]]) |
|
>>> preds = tensor([[[0.59, 0.91], [0.91, 0.99], [0.63, 0.04]], |
|
... [[0.38, 0.04], [0.86, 0.780], [0.45, 0.37]]]) |
|
>>> metric = BinaryRecall(multidim_average='samplewise') |
|
>>> metric(preds, target) |
|
tensor([0.6667, 0.0000]) |
|
|
|
""" |
|
|
|
is_differentiable: bool = False |
|
higher_is_better: Optional[bool] = True |
|
full_state_update: bool = False |
|
plot_lower_bound: float = 0.0 |
|
plot_upper_bound: float = 1.0 |
|
|
|
def compute(self) -> Tensor: |
|
"""Compute metric.""" |
|
tp, fp, tn, fn = self._final_state() |
|
return _precision_recall_reduce( |
|
"recall", |
|
tp, |
|
fp, |
|
tn, |
|
fn, |
|
average="binary", |
|
multidim_average=self.multidim_average, |
|
zero_division=self.zero_division, |
|
) |
|
|
|
def plot( |
|
self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None |
|
) -> _PLOT_OUT_TYPE: |
|
"""Plot a single or multiple values from the metric. |
|
|
|
Args: |
|
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results. |
|
If no value is provided, will automatically call `metric.compute` and plot that result. |
|
ax: An matplotlib axis object. If provided will add plot to that axis |
|
|
|
Returns: |
|
Figure object and Axes object |
|
|
|
Raises: |
|
ModuleNotFoundError: |
|
If `matplotlib` is not installed |
|
|
|
.. plot:: |
|
:scale: 75 |
|
|
|
>>> from torch import rand, randint |
|
>>> # Example plotting a single value |
|
>>> from torchmetrics.classification import BinaryRecall |
|
>>> metric = BinaryRecall() |
|
>>> metric.update(rand(10), randint(2,(10,))) |
|
>>> fig_, ax_ = metric.plot() |
|
|
|
.. plot:: |
|
:scale: 75 |
|
|
|
>>> from torch import rand, randint |
|
>>> # Example plotting multiple values |
|
>>> from torchmetrics.classification import BinaryRecall |
|
>>> metric = BinaryRecall() |
|
>>> values = [ ] |
|
>>> for _ in range(10): |
|
... values.append(metric(rand(10), randint(2,(10,)))) |
|
>>> fig_, ax_ = metric.plot(values) |
|
|
|
""" |
|
return self._plot(val, ax) |
|
|
|
|
|
class MulticlassRecall(MulticlassStatScores): |
|
r"""Compute `Recall`_ for multiclass tasks. |
|
|
|
.. math:: \text{Recall} = \frac{\text{TP}}{\text{TP} + \text{FN}} |
|
|
|
Where :math:`\text{TP}` and :math:`\text{FN}` represent the number of true positives and false negatives |
|
respectively. The metric is only proper defined when :math:`\text{TP} + \text{FN} \neq 0`. If this case is |
|
encountered for any class, the metric for that class will be set to `zero_division` (0 or 1, default is 0) and |
|
the overall metric may therefore be affected in turn. |
|
|
|
As input to ``forward`` and ``update`` the metric accepts the following input: |
|
|
|
- ``preds`` (:class:`~torch.Tensor`): An int tensor of shape ``(N, ...)`` or float tensor of shape ``(N, C, ..)`` |
|
If preds is a floating point we apply ``torch.argmax`` along the ``C`` dimension to automatically convert |
|
probabilities/logits into an int tensor. |
|
- ``target`` (:class:`~torch.Tensor`): An int tensor of shape ``(N, ...)`` |
|
|
|
As output to ``forward`` and ``compute`` the metric returns the following output: |
|
|
|
- ``mcr`` (:class:`~torch.Tensor`): The returned shape depends on the ``average`` and ``multidim_average`` |
|
arguments: |
|
|
|
- If ``multidim_average`` is set to ``global``: |
|
|
|
- If ``average='micro'/'macro'/'weighted'``, the output will be a scalar tensor |
|
- If ``average=None/'none'``, the shape will be ``(C,)`` |
|
|
|
- If ``multidim_average`` is set to ``samplewise``: |
|
|
|
- If ``average='micro'/'macro'/'weighted'``, the shape will be ``(N,)`` |
|
- If ``average=None/'none'``, the shape will be ``(N, C)`` |
|
|
|
If ``multidim_average`` is set to ``samplewise`` we expect at least one additional dimension ``...`` to be present, |
|
which the reduction will then be applied over instead of the sample dimension ``N``. |
|
|
|
Args: |
|
num_classes: Integer specifying the number of classes |
|
average: |
|
Defines the reduction that is applied over labels. Should be one of the following: |
|
|
|
- ``micro``: Sum statistics over all labels |
|
- ``macro``: Calculate statistics for each label and average them |
|
- ``weighted``: calculates statistics for each label and computes weighted average using their support |
|
- ``"none"`` or ``None``: calculates statistic for each label and applies no reduction |
|
top_k: |
|
Number of highest probability or logit score predictions considered to find the correct label. |
|
Only works when ``preds`` contain probabilities/logits. |
|
multidim_average: |
|
Defines how additionally dimensions ``...`` should be handled. Should be one of the following: |
|
|
|
- ``global``: Additional dimensions are flatted along the batch dimension |
|
- ``samplewise``: Statistic will be calculated independently for each sample on the ``N`` axis. |
|
The statistics in this case are calculated over the additional dimensions. |
|
|
|
ignore_index: |
|
Specifies a target value that is ignored and does not contribute to the metric calculation |
|
validate_args: bool indicating if input arguments and tensors should be validated for correctness. |
|
Set to ``False`` for faster computations. |
|
zero_division: Should be `0` or `1`. The value returned when :math:`\text{TP} + \text{FN} = 0`. |
|
|
|
Example (preds is int tensor): |
|
>>> from torch import tensor |
|
>>> from torchmetrics.classification import MulticlassRecall |
|
>>> target = tensor([2, 1, 0, 0]) |
|
>>> preds = tensor([2, 1, 0, 1]) |
|
>>> metric = MulticlassRecall(num_classes=3) |
|
>>> metric(preds, target) |
|
tensor(0.8333) |
|
>>> mcr = MulticlassRecall(num_classes=3, average=None) |
|
>>> mcr(preds, target) |
|
tensor([0.5000, 1.0000, 1.0000]) |
|
|
|
Example (preds is float tensor): |
|
>>> from torchmetrics.classification import MulticlassRecall |
|
>>> target = tensor([2, 1, 0, 0]) |
|
>>> preds = tensor([[0.16, 0.26, 0.58], |
|
... [0.22, 0.61, 0.17], |
|
... [0.71, 0.09, 0.20], |
|
... [0.05, 0.82, 0.13]]) |
|
>>> metric = MulticlassRecall(num_classes=3) |
|
>>> metric(preds, target) |
|
tensor(0.8333) |
|
>>> mcr = MulticlassRecall(num_classes=3, average=None) |
|
>>> mcr(preds, target) |
|
tensor([0.5000, 1.0000, 1.0000]) |
|
|
|
Example (multidim tensors): |
|
>>> from torchmetrics.classification import MulticlassRecall |
|
>>> target = tensor([[[0, 1], [2, 1], [0, 2]], [[1, 1], [2, 0], [1, 2]]]) |
|
>>> preds = tensor([[[0, 2], [2, 0], [0, 1]], [[2, 2], [2, 1], [1, 0]]]) |
|
>>> metric = MulticlassRecall(num_classes=3, multidim_average='samplewise') |
|
>>> metric(preds, target) |
|
tensor([0.5000, 0.2778]) |
|
>>> mcr = MulticlassRecall(num_classes=3, multidim_average='samplewise', average=None) |
|
>>> mcr(preds, target) |
|
tensor([[1.0000, 0.0000, 0.5000], |
|
[0.0000, 0.3333, 0.5000]]) |
|
|
|
""" |
|
|
|
is_differentiable: bool = False |
|
higher_is_better: Optional[bool] = True |
|
full_state_update: bool = False |
|
plot_lower_bound: float = 0.0 |
|
plot_upper_bound: float = 1.0 |
|
plot_legend_name: str = "Class" |
|
|
|
def compute(self) -> Tensor: |
|
"""Compute metric.""" |
|
tp, fp, tn, fn = self._final_state() |
|
return _precision_recall_reduce( |
|
"recall", |
|
tp, |
|
fp, |
|
tn, |
|
fn, |
|
average=self.average, |
|
multidim_average=self.multidim_average, |
|
top_k=self.top_k, |
|
zero_division=self.zero_division, |
|
) |
|
|
|
def plot( |
|
self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None |
|
) -> _PLOT_OUT_TYPE: |
|
"""Plot a single or multiple values from the metric. |
|
|
|
Args: |
|
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results. |
|
If no value is provided, will automatically call `metric.compute` and plot that result. |
|
ax: An matplotlib axis object. If provided will add plot to that axis |
|
|
|
Returns: |
|
Figure object and Axes object |
|
|
|
Raises: |
|
ModuleNotFoundError: |
|
If `matplotlib` is not installed |
|
|
|
.. plot:: |
|
:scale: 75 |
|
|
|
>>> from torch import randint |
|
>>> # Example plotting a single value per class |
|
>>> from torchmetrics.classification import MulticlassRecall |
|
>>> metric = MulticlassRecall(num_classes=3, average=None) |
|
>>> metric.update(randint(3, (20,)), randint(3, (20,))) |
|
>>> fig_, ax_ = metric.plot() |
|
|
|
.. plot:: |
|
:scale: 75 |
|
|
|
>>> from torch import randint |
|
>>> # Example plotting a multiple values per class |
|
>>> from torchmetrics.classification import MulticlassRecall |
|
>>> metric = MulticlassRecall(num_classes=3, average=None) |
|
>>> values = [] |
|
>>> for _ in range(20): |
|
... values.append(metric(randint(3, (20,)), randint(3, (20,)))) |
|
>>> fig_, ax_ = metric.plot(values) |
|
|
|
""" |
|
return self._plot(val, ax) |
|
|
|
|
|
class MultilabelRecall(MultilabelStatScores): |
|
r"""Compute `Recall`_ for multilabel tasks. |
|
|
|
.. math:: \text{Recall} = \frac{\text{TP}}{\text{TP} + \text{FN}} |
|
|
|
Where :math:`\text{TP}` and :math:`\text{FN}` represent the number of true positives and false negatives |
|
respectively. The metric is only proper defined when :math:`\text{TP} + \text{FN} \neq 0`. If this case is |
|
encountered for any label, the metric for that label will be set to `zero_division` (0 or 1, default is 0) and |
|
the overall metric may therefore be affected in turn. |
|
|
|
As input to ``forward`` and ``update`` the metric accepts the following input: |
|
|
|
- ``preds`` (:class:`~torch.Tensor`): An int or float tensor of shape ``(N, C, ...)``. If preds is a floating |
|
point tensor with values outside [0,1] range we consider the input to be logits and will auto apply sigmoid |
|
per element. Additionally, we convert to int tensor with thresholding using the value in ``threshold``. |
|
- ``target`` (:class:`~torch.Tensor`): An int tensor of shape ``(N, C, ...)`` |
|
|
|
As output to ``forward`` and ``compute`` the metric returns the following output: |
|
|
|
- ``mlr`` (:class:`~torch.Tensor`): The returned shape depends on the ``average`` and ``multidim_average`` |
|
arguments: |
|
|
|
- If ``multidim_average`` is set to ``global``: |
|
|
|
- If ``average='micro'/'macro'/'weighted'``, the output will be a scalar tensor |
|
- If ``average=None/'none'``, the shape will be ``(C,)`` |
|
|
|
- If ``multidim_average`` is set to ``samplewise``: |
|
|
|
- If ``average='micro'/'macro'/'weighted'``, the shape will be ``(N,)`` |
|
- If ``average=None/'none'``, the shape will be ``(N, C)`` |
|
|
|
If ``multidim_average`` is set to ``samplewise`` we expect at least one additional dimension ``...`` to be present, |
|
which the reduction will then be applied over instead of the sample dimension ``N``. |
|
|
|
Args: |
|
num_labels: Integer specifying the number of labels |
|
threshold: Threshold for transforming probability to binary (0,1) predictions |
|
average: |
|
Defines the reduction that is applied over labels. Should be one of the following: |
|
|
|
- ``micro``: Sum statistics over all labels |
|
- ``macro``: Calculate statistics for each label and average them |
|
- ``weighted``: calculates statistics for each label and computes weighted average using their support |
|
- ``"none"`` or ``None``: calculates statistic for each label and applies no reduction |
|
|
|
multidim_average: |
|
Defines how additionally dimensions ``...`` should be handled. Should be one of the following: |
|
|
|
- ``global``: Additional dimensions are flatted along the batch dimension |
|
- ``samplewise``: Statistic will be calculated independently for each sample on the ``N`` axis. |
|
The statistics in this case are calculated over the additional dimensions. |
|
|
|
ignore_index: |
|
Specifies a target value that is ignored and does not contribute to the metric calculation |
|
validate_args: bool indicating if input arguments and tensors should be validated for correctness. |
|
Set to ``False`` for faster computations. |
|
zero_division: Should be `0` or `1`. The value returned when :math:`\text{TP} + \text{FN} = 0`. |
|
|
|
Example (preds is int tensor): |
|
>>> from torch import tensor |
|
>>> from torchmetrics.classification import MultilabelRecall |
|
>>> target = tensor([[0, 1, 0], [1, 0, 1]]) |
|
>>> preds = tensor([[0, 0, 1], [1, 0, 1]]) |
|
>>> metric = MultilabelRecall(num_labels=3) |
|
>>> metric(preds, target) |
|
tensor(0.6667) |
|
>>> mlr = MultilabelRecall(num_labels=3, average=None) |
|
>>> mlr(preds, target) |
|
tensor([1., 0., 1.]) |
|
|
|
Example (preds is float tensor): |
|
>>> from torchmetrics.classification import MultilabelRecall |
|
>>> target = tensor([[0, 1, 0], [1, 0, 1]]) |
|
>>> preds = tensor([[0.11, 0.22, 0.84], [0.73, 0.33, 0.92]]) |
|
>>> metric = MultilabelRecall(num_labels=3) |
|
>>> metric(preds, target) |
|
tensor(0.6667) |
|
>>> mlr = MultilabelRecall(num_labels=3, average=None) |
|
>>> mlr(preds, target) |
|
tensor([1., 0., 1.]) |
|
|
|
Example (multidim tensors): |
|
>>> from torchmetrics.classification import MultilabelRecall |
|
>>> target = tensor([[[0, 1], [1, 0], [0, 1]], [[1, 1], [0, 0], [1, 0]]]) |
|
>>> preds = tensor([[[0.59, 0.91], [0.91, 0.99], [0.63, 0.04]], |
|
... [[0.38, 0.04], [0.86, 0.780], [0.45, 0.37]]]) |
|
>>> metric = MultilabelRecall(num_labels=3, multidim_average='samplewise') |
|
>>> metric(preds, target) |
|
tensor([0.6667, 0.0000]) |
|
>>> mlr = MultilabelRecall(num_labels=3, multidim_average='samplewise', average=None) |
|
>>> mlr(preds, target) |
|
tensor([[1., 1., 0.], |
|
[0., 0., 0.]]) |
|
|
|
""" |
|
|
|
is_differentiable: bool = False |
|
higher_is_better: Optional[bool] = True |
|
full_state_update: bool = False |
|
plot_lower_bound: float = 0.0 |
|
plot_upper_bound: float = 1.0 |
|
plot_legend_name: str = "Label" |
|
|
|
def compute(self) -> Tensor: |
|
"""Compute metric.""" |
|
tp, fp, tn, fn = self._final_state() |
|
return _precision_recall_reduce( |
|
"recall", |
|
tp, |
|
fp, |
|
tn, |
|
fn, |
|
average=self.average, |
|
multidim_average=self.multidim_average, |
|
multilabel=True, |
|
zero_division=self.zero_division, |
|
) |
|
|
|
def plot( |
|
self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None |
|
) -> _PLOT_OUT_TYPE: |
|
"""Plot a single or multiple values from the metric. |
|
|
|
Args: |
|
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results. |
|
If no value is provided, will automatically call `metric.compute` and plot that result. |
|
ax: An matplotlib axis object. If provided will add plot to that axis |
|
|
|
Returns: |
|
Figure object and Axes object |
|
|
|
Raises: |
|
ModuleNotFoundError: |
|
If `matplotlib` is not installed |
|
|
|
.. plot:: |
|
:scale: 75 |
|
|
|
>>> from torch import rand, randint |
|
>>> # Example plotting a single value |
|
>>> from torchmetrics.classification import MultilabelRecall |
|
>>> metric = MultilabelRecall(num_labels=3) |
|
>>> metric.update(randint(2, (20, 3)), randint(2, (20, 3))) |
|
>>> fig_, ax_ = metric.plot() |
|
|
|
.. plot:: |
|
:scale: 75 |
|
|
|
>>> from torch import rand, randint |
|
>>> # Example plotting multiple values |
|
>>> from torchmetrics.classification import MultilabelRecall |
|
>>> metric = MultilabelRecall(num_labels=3) |
|
>>> values = [ ] |
|
>>> for _ in range(10): |
|
... values.append(metric(randint(2, (20, 3)), randint(2, (20, 3)))) |
|
>>> fig_, ax_ = metric.plot(values) |
|
|
|
""" |
|
return self._plot(val, ax) |
|
|
|
|
|
class Precision(_ClassificationTaskWrapper): |
|
r"""Compute `Precision`_. |
|
|
|
.. math:: \text{Precision} = \frac{\text{TP}}{\text{TP} + \text{FP}} |
|
|
|
Where :math:`\text{TP}` and :math:`\text{FP}` represent the number of true positives and false positives |
|
respectively. The metric is only proper defined when :math:`\text{TP} + \text{FP} \neq 0`. If this case is |
|
encountered for any class/label, the metric for that class/label will be set to 0 and the overall metric may |
|
therefore be affected in turn. |
|
|
|
This function is a simple wrapper to get the task specific versions of this metric, which is done by setting the |
|
``task`` argument to either ``'binary'``, ``'multiclass'`` or ``multilabel``. See the documentation of |
|
:class:`~torchmetrics.classification.BinaryPrecision`, :class:`~torchmetrics.classification.MulticlassPrecision` and |
|
:class:`~torchmetrics.classification.MultilabelPrecision` for the specific details of each argument influence and |
|
examples. |
|
|
|
Legacy Example: |
|
>>> from torch import tensor |
|
>>> preds = tensor([2, 0, 2, 1]) |
|
>>> target = tensor([1, 1, 2, 0]) |
|
>>> precision = Precision(task="multiclass", average='macro', num_classes=3) |
|
>>> precision(preds, target) |
|
tensor(0.1667) |
|
>>> precision = Precision(task="multiclass", average='micro', num_classes=3) |
|
>>> precision(preds, target) |
|
tensor(0.2500) |
|
|
|
""" |
|
|
|
def __new__( |
|
cls: type["Precision"], |
|
task: Literal["binary", "multiclass", "multilabel"], |
|
threshold: float = 0.5, |
|
num_classes: Optional[int] = None, |
|
num_labels: Optional[int] = None, |
|
average: Optional[Literal["micro", "macro", "weighted", "none"]] = "micro", |
|
multidim_average: Optional[Literal["global", "samplewise"]] = "global", |
|
top_k: Optional[int] = 1, |
|
ignore_index: Optional[int] = None, |
|
validate_args: bool = True, |
|
**kwargs: Any, |
|
) -> Metric: |
|
"""Initialize task metric.""" |
|
assert multidim_average is not None |
|
kwargs.update({ |
|
"multidim_average": multidim_average, |
|
"ignore_index": ignore_index, |
|
"validate_args": validate_args, |
|
}) |
|
task = ClassificationTask.from_str(task) |
|
if task == ClassificationTask.BINARY: |
|
return BinaryPrecision(threshold, **kwargs) |
|
if task == ClassificationTask.MULTICLASS: |
|
if not isinstance(num_classes, int): |
|
raise ValueError(f"`num_classes` is expected to be `int` but `{type(num_classes)} was passed.`") |
|
if not isinstance(top_k, int): |
|
raise ValueError(f"`top_k` is expected to be `int` but `{type(top_k)} was passed.`") |
|
return MulticlassPrecision(num_classes, top_k, average, **kwargs) |
|
if task == ClassificationTask.MULTILABEL: |
|
if not isinstance(num_labels, int): |
|
raise ValueError(f"`num_labels` is expected to be `int` but `{type(num_labels)} was passed.`") |
|
return MultilabelPrecision(num_labels, threshold, average, **kwargs) |
|
raise ValueError(f"Task {task} not supported!") |
|
|
|
|
|
class Recall(_ClassificationTaskWrapper): |
|
r"""Compute `Recall`_. |
|
|
|
.. math:: \text{Recall} = \frac{\text{TP}}{\text{TP} + \text{FN}} |
|
|
|
Where :math:`\text{TP}` and :math:`\text{FN}` represent the number of true positives and |
|
false negatives respectively. The metric is only proper defined when :math:`\text{TP} + \text{FN} \neq 0`. If this |
|
case is encountered for any class/label, the metric for that class/label will be set to 0 and the overall metric may |
|
therefore be affected in turn. |
|
|
|
This function is a simple wrapper to get the task specific versions of this metric, which is done by setting the |
|
``task`` argument to either ``'binary'``, ``'multiclass'`` or ``multilabel``. See the documentation of |
|
:class:`~torchmetrics.classification.BinaryRecall`, |
|
:class:`~torchmetrics.classification.MulticlassRecall` and :class:`~torchmetrics.classification.MultilabelRecall` |
|
for the specific details of each argument influence and examples. |
|
|
|
Legacy Example: |
|
>>> from torch import tensor |
|
>>> preds = tensor([2, 0, 2, 1]) |
|
>>> target = tensor([1, 1, 2, 0]) |
|
>>> recall = Recall(task="multiclass", average='macro', num_classes=3) |
|
>>> recall(preds, target) |
|
tensor(0.3333) |
|
>>> recall = Recall(task="multiclass", average='micro', num_classes=3) |
|
>>> recall(preds, target) |
|
tensor(0.2500) |
|
|
|
""" |
|
|
|
def __new__( |
|
cls: type["Recall"], |
|
task: Literal["binary", "multiclass", "multilabel"], |
|
threshold: float = 0.5, |
|
num_classes: Optional[int] = None, |
|
num_labels: Optional[int] = None, |
|
average: Optional[Literal["micro", "macro", "weighted", "none"]] = "micro", |
|
multidim_average: Optional[Literal["global", "samplewise"]] = "global", |
|
top_k: Optional[int] = 1, |
|
ignore_index: Optional[int] = None, |
|
validate_args: bool = True, |
|
**kwargs: Any, |
|
) -> Metric: |
|
"""Initialize task metric.""" |
|
task = ClassificationTask.from_str(task) |
|
assert multidim_average is not None |
|
kwargs.update({ |
|
"multidim_average": multidim_average, |
|
"ignore_index": ignore_index, |
|
"validate_args": validate_args, |
|
}) |
|
if task == ClassificationTask.BINARY: |
|
return BinaryRecall(threshold, **kwargs) |
|
if task == ClassificationTask.MULTICLASS: |
|
if not isinstance(num_classes, int): |
|
raise ValueError(f"`num_classes` is expected to be `int` but `{type(num_classes)} was passed.`") |
|
if not isinstance(top_k, int): |
|
raise ValueError(f"`top_k` is expected to be `int` but `{type(top_k)} was passed.`") |
|
return MulticlassRecall(num_classes, top_k, average, **kwargs) |
|
if task == ClassificationTask.MULTILABEL: |
|
if not isinstance(num_labels, int): |
|
raise ValueError(f"`num_labels` is expected to be `int` but `{type(num_labels)} was passed.`") |
|
return MultilabelRecall(num_labels, threshold, average, **kwargs) |
|
return None |
|
|