jamtur01's picture
Upload folder using huggingface_hub
9c6594c verified
# Copyright The Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, List, Optional, Sequence, Tuple, Type, Union
from torch import Tensor
from typing_extensions import Literal
from torchmetrics.classification.base import _ClassificationTaskWrapper
from torchmetrics.classification.roc import BinaryROC, MulticlassROC, MultilabelROC
from torchmetrics.functional.classification.logauc import (
_binary_logauc_compute,
_reduce_logauc,
_validate_fpr_range,
)
from torchmetrics.metric import Metric
from torchmetrics.utilities.enums import ClassificationTask
from torchmetrics.utilities.imports import _MATPLOTLIB_AVAILABLE
from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE
if not _MATPLOTLIB_AVAILABLE:
__doctest_skip__ = ["BinaryLogAUC.plot", "MulticlassLogAUC.plot", "MultilabelLogAUC.plot"]
class BinaryLogAUC(BinaryROC):
r"""Compute the `Log AUC`_ score for binary classification tasks.
The score is computed by first computing the ROC curve, which then is interpolated to the specified range of false
positive rates (FPR) and then the log is taken of the FPR before the area under the curve (AUC) is computed. The
score is commonly used in applications where the positive and negative are imbalanced and a low false positive rate
is of high importance.
As input to ``forward`` and ``update`` the metric accepts the following input:
- ``preds`` (:class:`~torch.Tensor`): A float tensor of shape ``(N, ...)`` containing probabilities or logits for
each observation. If preds has values outside [0,1] range we consider the input to be logits and will auto apply
sigmoid per element.
- ``target`` (:class:`~torch.Tensor`): An int tensor of shape ``(N, ...)`` containing ground truth labels, and
therefore only contain {0,1} values (except if `ignore_index` is specified). The value 1 always encodes the
positive class.
As output to ``forward`` and ``compute`` the metric returns the following output:
- ``logauc`` (:class:`~torch.Tensor`): A single scalar with the logauc score.
Additional dimension ``...`` will be flattened into the batch dimension.
The implementation both supports calculating the metric in a non-binned but accurate version and a binned version
that is less accurate but more memory efficient. Setting the `thresholds` argument to `None` will activate the
non-binned version that uses memory of size :math:`\mathcal{O}(n_{samples})` whereas setting the `thresholds`
argument to either an integer, list or a 1d tensor will use a binned version that uses memory of
size :math:`\mathcal{O}(n_{thresholds})` (constant memory).
Args:
fpr_range: 2-element tuple with the lower and upper bound of the false positive rate range to compute the log
AUC score.
thresholds:
Can be one of:
- If set to `None`, will use a non-binned approach where thresholds are dynamically calculated from
all the data. Most accurate but also most memory consuming approach.
- If set to an `int` (larger than 1), will use that number of thresholds linearly spaced from
0 to 1 as bins for the calculation.
- If set to an `list` of floats, will use the indicated thresholds in the list as bins for the calculation
- If set to an 1d `tensor` of floats, will use the indicated thresholds in the tensor as
bins for the calculation.
ignore_index:
Specifies a target value that is ignored and does not contribute to the metric calculation
validate_args: bool indicating if input arguments and tensors should be validated for correctness.
Set to ``False`` for faster computations.
kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info.
Example:
>>> from torch import tensor
>>> from torchmetrics.classification import BinaryLogAUC
>>> preds = tensor([0.75, 0.05, 0.05, 0.05, 0.05])
>>> target = tensor([1, 0, 0, 0, 0])
>>> metric = BinaryLogAUC()
>>> metric(preds, target)
tensor(1.)
"""
is_differentiable: bool = False
higher_is_better: bool = True
full_state_update: bool = False
plot_lower_bound: float = 0.0
plot_upper_bound: float = 1.0
def __init__(
self,
fpr_range: Tuple[float, float] = (0.001, 0.1),
thresholds: Optional[Union[int, List[float], Tensor]] = None,
ignore_index: Optional[int] = None,
validate_args: bool = False,
**kwargs: Any,
) -> None:
super().__init__(thresholds=thresholds, ignore_index=ignore_index, validate_args=validate_args, **kwargs)
if validate_args:
_validate_fpr_range(fpr_range)
self.fpr_range = fpr_range
def compute(self) -> Tensor: # type: ignore[override]
"""Computes the log AUC score."""
fpr, tpr, _ = super().compute()
return _binary_logauc_compute(fpr, tpr, fpr_range=self.fpr_range)
def plot( # type: ignore[override]
self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None
) -> _PLOT_OUT_TYPE:
"""Plot a single or multiple values from the metric.
Args:
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results.
If no value is provided, will automatically call `metric.compute` and plot that result.
ax: An matplotlib axis object. If provided will add plot to that axis
Returns:
Figure and Axes object
Raises:
ModuleNotFoundError:
If `matplotlib` is not installed
.. plot::
:scale: 75
>>> # Example plotting a single
>>> import torch
>>> from torchmetrics.classification import BinaryLogAUC
>>> metric = BinaryLogAUC()
>>> metric.update(torch.rand(20,), torch.randint(2, (20,)))
>>> fig_, ax_ = metric.plot()
.. plot::
:scale: 75
>>> # Example plotting multiple values
>>> import torch
>>> from torchmetrics.classification import BinaryLogAUC
>>> metric = BinaryLogAUC()
>>> values = [ ]
>>> for _ in range(10):
... values.append(metric(torch.rand(20,), torch.randint(2, (20,))))
>>> fig_, ax_ = metric.plot(values)
"""
return self._plot(val, ax)
class MulticlassLogAUC(MulticlassROC):
r"""Compute the `Log AUC`_ score for multiclass classification tasks.
The score is computed by first computing the ROC curve, which then is interpolated to the specified range of false
positive rates (FPR) and then the log is taken of the FPR before the area under the curve (AUC) is computed. The
score is commonly used in applications where the positive and negative are imbalanced and a low false positive rate
is of high importance.
As input to ``forward`` and ``update`` the metric accepts the following input:
- ``preds`` (:class:`~torch.Tensor`): A float tensor of shape ``(N, C, ...)`` containing probabilities or logits
for each observation. If preds has values outside [0,1] range we consider the input to be logits and will auto
apply softmax per sample.
- ``target`` (:class:`~torch.Tensor`): An int tensor of shape ``(N, ...)`` containing ground truth labels, and
therefore only contain values in the [0, n_classes-1] range (except if `ignore_index` is specified).
As output to ``forward`` and ``compute`` the metric returns the following output:
- ``logauc`` (:class:`~torch.Tensor`): If `average=None|"none"` then a 1d tensor of shape (n_classes, ) will
be returned with logauc score per class. If `average="macro"` then a single scalar is returned.
Additional dimension ``...`` will be flattened into the batch dimension.
The implementation both supports calculating the metric in a non-binned but accurate version and a binned version
that is less accurate but more memory efficient. Setting the `thresholds` argument to `None` will activate the
non-binned version that uses memory of size :math:`\mathcal{O}(n_{samples})` whereas setting the `thresholds`
argument to either an integer, list or a 1d tensor will use a binned version that uses memory of
size :math:`\mathcal{O}(n_{thresholds})` (constant memory).
Args:
num_classes: Integer specifying the number of classes
fpr_range: 2-element tuple with the lower and upper bound of the false positive rate range to compute the log
AUC score.
average:
Defines the reduction that is applied over classes. Should be one of the following:
- ``"macro"``: Calculate score for each class and average them
- ``"weighted"``: calculates score for each class and computes weighted average using their support
- ``"none"`` or ``None``: calculates score for each class and applies no reduction
thresholds:
Can be one of:
- If set to `None`, will use a non-binned approach where thresholds are dynamically calculated from
all the data. Most accurate but also most memory consuming approach.
- If set to an `int` (larger than 1), will use that number of thresholds linearly spaced from
0 to 1 as bins for the calculation.
- If set to an `list` of floats, will use the indicated thresholds in the list as bins for the calculation
- If set to an 1d `tensor` of floats, will use the indicated thresholds in the tensor as
bins for the calculation.
validate_args: bool indicating if input arguments and tensors should be validated for correctness.
Set to ``False`` for faster computations.
kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info.
Example:
>>> from torch import tensor
>>> from torchmetrics.classification import MulticlassLogAUC
>>> preds = tensor([[0.75, 0.05, 0.05, 0.05, 0.05],
... [0.05, 0.75, 0.05, 0.05, 0.05],
... [0.05, 0.05, 0.75, 0.05, 0.05],
... [0.05, 0.05, 0.05, 0.75, 0.05]])
>>> target = tensor([0, 1, 3, 2])
>>> metric = MulticlassLogAUC(num_classes=5, average="macro", thresholds=None)
>>> metric(preds, target)
tensor(0.4000)
>>> metric = MulticlassLogAUC(num_classes=5, average=None, thresholds=None)
>>> metric(preds, target)
tensor([1., 1., 0., 0., 0.])
"""
is_differentiable: bool = False
higher_is_better: bool = True
full_state_update: bool = False
plot_lower_bound: float = 0.0
plot_upper_bound: float = 1.0
plot_legend_name: str = "Class"
def __init__(
self,
num_classes: int,
fpr_range: Tuple[float, float] = (0.001, 0.1),
average: Optional[Literal["macro", "none"]] = None,
thresholds: Optional[Union[int, List[float], Tensor]] = None,
ignore_index: Optional[int] = None,
validate_args: bool = True,
**kwargs: Any,
) -> None:
super().__init__(
num_classes=num_classes,
thresholds=thresholds,
average=None,
ignore_index=ignore_index,
validate_args=validate_args,
**kwargs,
)
if validate_args:
_validate_fpr_range(fpr_range)
self.fpr_range = fpr_range
self.average2 = average # self.average is already used by parent class
def compute(self) -> Tensor: # type: ignore[override]
"""Computes the log AUC score."""
fpr, tpr, _ = super().compute()
return _reduce_logauc(fpr, tpr, fpr_range=self.fpr_range, average=self.average2)
def plot( # type: ignore[override]
self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None
) -> _PLOT_OUT_TYPE:
"""Plot a single or multiple values from the metric.
Args:
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results.
If no value is provided, will automatically call `metric.compute` and plot that result.
ax: An matplotlib axis object. If provided will add plot to that axis
Returns:
Figure and Axes object
Raises:
ModuleNotFoundError:
If `matplotlib` is not installed
.. plot::
:scale: 75
>>> # Example plotting a single
>>> import torch
>>> from torchmetrics.classification import MulticlassLogAUC
>>> metric = MulticlassLogAUC(num_classes=3)
>>> metric.update(torch.randn(20, 3), torch.randint(3,(20,)))
>>> fig_, ax_ = metric.plot()
.. plot::
:scale: 75
>>> # Example plotting multiple values
>>> import torch
>>> from torchmetrics.classification import MulticlassLogAUC
>>> metric = MulticlassLogAUC(num_classes=3)
>>> values = [ ]
>>> for _ in range(10):
... values.append(metric(torch.randn(20, 3), torch.randint(3, (20,))))
>>> fig_, ax_ = metric.plot(values)
"""
return self._plot(val, ax)
class MultilabelLogAUC(MultilabelROC):
r"""Compute the `Log AUC`_ score for multiclass classification tasks.
The score is computed by first computing the ROC curve, which then is interpolated to the specified range of false
positive rates (FPR) and then the log is taken of the FPR before the area under the curve (AUC) is computed. The
score is commonly used in applications where the positive and negative are imbalanced and a low false positive rate
is of high importance.
As input to ``forward`` and ``update`` the metric accepts the following input:
- ``preds`` (:class:`~torch.Tensor`): A float tensor of shape ``(N, C, ...)`` containing probabilities or logits
for each observation. If preds has values outside [0,1] range we consider the input to be logits and will auto
apply sigmoid per element.
- ``target`` (:class:`~torch.Tensor`): An int tensor of shape ``(N, C, ...)`` containing ground truth labels, and
therefore only contain {0,1} values (except if `ignore_index` is specified).
As output to ``forward`` and ``compute`` the metric returns the following output:
- ``logauc`` (:class:`~torch.Tensor`): If `average=None|"none"` then a 1d tensor of shape (num_labels, ) will
be returned with logauc score per class. If `average="macro"` then a single scalar is returned.
Additional dimension ``...`` will be flattened into the batch dimension.
The implementation both supports calculating the metric in a non-binned but accurate version and a binned version
that is less accurate but more memory efficient. Setting the `thresholds` argument to `None` will activate the
non-binned version that uses memory of size :math:`\mathcal{O}(n_{samples})` whereas setting the `thresholds`
argument to either an integer, list or a 1d tensor will use a binned version that uses memory of
size :math:`\mathcal{O}(n_{thresholds} \times n_{labels})` (constant memory).
Args:
num_labels: Integer specifying the number of labels
fpr_range: 2-element tuple with the lower and upper bound of the false positive rate range to compute the log
AUC score.
average:
Defines the reduction that is applied over labels. Should be one of the following:
- ``"macro"``: Calculate the score for each label and average them
- ``"none"`` or ``None``: calculates score for each label and applies no reduction
thresholds:
Can be one of:
- If set to `None`, will use a non-binned approach where thresholds are dynamically calculated from
all the data. Most accurate but also most memory consuming approach.
- If set to an `int` (larger than 1), will use that number of thresholds linearly spaced from
0 to 1 as bins for the calculation.
- If set to an `list` of floats, will use the indicated thresholds in the list as bins for the calculation
- If set to an 1d `tensor` of floats, will use the indicated thresholds in the tensor as
bins for the calculation.
validate_args: bool indicating if input arguments and tensors should be validated for correctness.
Set to ``False`` for faster computations.
kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info.
Example:
>>> from torch import tensor
>>> from torchmetrics.classification import MultilabelLogAUC
>>> preds = tensor([[0.75, 0.05, 0.35],
... [0.45, 0.75, 0.05],
... [0.05, 0.55, 0.75],
... [0.05, 0.65, 0.05]])
>>> target = tensor([[1, 0, 1],
... [0, 0, 0],
... [0, 1, 1],
... [1, 1, 1]])
>>> metric = MultilabelLogAUC(num_labels=3, average="macro", thresholds=None)
>>> metric(preds, target)
tensor(0.3945)
>>> metric = MultilabelLogAUC(num_labels=3, average=None, thresholds=None)
>>> metric(preds, target)
tensor([0.5000, 0.0000, 0.6835])
"""
is_differentiable: bool = False
higher_is_better: bool = True
full_state_update: bool = False
plot_lower_bound: float = 0.0
plot_upper_bound: float = 1.0
plot_legend_name: str = "Label"
def __init__(
self,
num_labels: int,
fpr_range: Tuple[float, float] = (0.001, 0.1),
average: Optional[Literal["macro", "none"]] = None,
thresholds: Optional[Union[int, List[float], Tensor]] = None,
ignore_index: Optional[int] = None,
validate_args: bool = True,
**kwargs: Any,
) -> None:
if validate_args:
_validate_fpr_range(fpr_range)
self.fpr_range = fpr_range
self.average2 = average # self.average is already used by parent class
super().__init__(
num_labels=num_labels,
thresholds=thresholds,
ignore_index=ignore_index,
validate_args=validate_args,
**kwargs,
)
def compute(self) -> Tensor: # type: ignore[override]
"""Computes the log AUC score."""
fpr, tpr, _ = super().compute()
return _reduce_logauc(fpr, tpr, fpr_range=self.fpr_range, average=self.average2)
def plot( # type: ignore[override]
self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None
) -> _PLOT_OUT_TYPE:
"""Plot a single or multiple values from the metric.
Args:
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results.
If no value is provided, will automatically call `metric.compute` and plot that result.
ax: An matplotlib axis object. If provided will add plot to that axis
Returns:
Figure and Axes object
Raises:
ModuleNotFoundError:
If `matplotlib` is not installed
.. plot::
:scale: 75
>>> # Example plotting a single
>>> import torch
>>> from torchmetrics.classification import MultilabelLogAUC
>>> metric = MultilabelLogAUC(num_labels=3)
>>> metric.update(torch.rand(20,3), torch.randint(2, (20,3)))
>>> fig_, ax_ = metric.plot()
.. plot::
:scale: 75
>>> # Example plotting multiple values
>>> import torch
>>> from torchmetrics.classification import MultilabelLogAUC
>>> metric = MultilabelLogAUC(num_labels=3)
>>> values = [ ]
>>> for _ in range(10):
... values.append(metric(torch.rand(20,3), torch.randint(2, (20,3))))
>>> fig_, ax_ = metric.plot(values)
"""
return self._plot(val, ax)
class LogAUC(_ClassificationTaskWrapper):
r"""Compute the `Log AUC`_ score for multiclass classification tasks.
The score is computed by first computing the ROC curve, which then is interpolated to the specified range of false
positive rates (FPR) and then the log is taken of the FPR before the area under the curve (AUC) is computed. The
score is commonly used in applications where the positive and negative are imbalanced and a low false positive rate
is of high importance.
This module is a simple wrapper to get the task specific versions of this metric, which is done by setting the
``task`` argument to either ``'binary'``, ``'multiclass'`` or ``multilabel``. See the documentation of
:class:`~torchmetrics.classification.BinaryLogAUC`, :class:`~torchmetrics.classification.MulticlassLogAUC` and
:class:`~torchmetrics.classification.MultilabelLogAUC` for the specific details of each argument influence and
examples.
"""
def __new__( # type: ignore[misc]
cls: Type["LogAUC"],
task: Literal["binary", "multiclass", "multilabel"],
thresholds: Optional[Union[int, List[float], Tensor]] = None,
fpr_range: Optional[Tuple[float, float]] = (0.001, 0.1),
num_classes: Optional[int] = None,
num_labels: Optional[int] = None,
ignore_index: Optional[int] = None,
validate_args: bool = True,
**kwargs: Any,
) -> Metric:
"""Initialize task metric."""
task = ClassificationTask.from_str(task)
kwargs.update({
"thresholds": thresholds,
"fpr_range": fpr_range,
"ignore_index": ignore_index,
"validate_args": validate_args,
})
if task == ClassificationTask.BINARY:
return BinaryLogAUC(**kwargs)
if task == ClassificationTask.MULTICLASS:
if not isinstance(num_classes, int):
raise ValueError(f"`num_classes` is expected to be `int` but `{type(num_classes)} was passed.`")
return MulticlassLogAUC(num_classes, **kwargs)
if task == ClassificationTask.MULTILABEL:
if not isinstance(num_labels, int):
raise ValueError(f"`num_labels` is expected to be `int` but `{type(num_labels)} was passed.`")
return MultilabelLogAUC(num_labels, **kwargs)
raise ValueError(f"Task {task} not supported!")