|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from collections.abc import Sequence |
|
from typing import Any, Optional, Union |
|
|
|
from torch import Tensor |
|
from typing_extensions import Literal |
|
|
|
from torchmetrics.classification.base import _ClassificationTaskWrapper |
|
from torchmetrics.classification.stat_scores import BinaryStatScores, MulticlassStatScores, MultilabelStatScores |
|
from torchmetrics.functional.classification.hamming import _hamming_distance_reduce |
|
from torchmetrics.metric import Metric |
|
from torchmetrics.utilities.enums import ClassificationTask |
|
from torchmetrics.utilities.imports import _MATPLOTLIB_AVAILABLE |
|
from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE |
|
|
|
if not _MATPLOTLIB_AVAILABLE: |
|
__doctest_skip__ = [ |
|
"BinaryHammingDistance.plot", |
|
"MulticlassHammingDistance.plot", |
|
"MultilabelHammingDistance.plot", |
|
] |
|
|
|
|
|
class BinaryHammingDistance(BinaryStatScores): |
|
r"""Compute the average `Hamming distance`_ (also known as Hamming loss) for binary tasks. |
|
|
|
.. math:: |
|
\text{Hamming distance} = \frac{1}{N \cdot L} \sum_i^N \sum_l^L 1(y_{il} \neq \hat{y}_{il}) |
|
|
|
Where :math:`y` is a tensor of target values, :math:`\hat{y}` is a tensor of predictions, |
|
and :math:`\bullet_{il}` refers to the :math:`l`-th label of the :math:`i`-th sample of that |
|
tensor. |
|
|
|
As input to ``forward`` and ``update`` the metric accepts the following input: |
|
|
|
- ``preds`` (:class:`~torch.Tensor`): An int or float tensor of shape ``(N, ...)``. If preds is a floating point |
|
tensor with values outside [0,1] range we consider the input to be logits and will auto apply sigmoid per |
|
element. Additionally, we convert to int tensor with thresholding using the value in ``threshold``. |
|
- ``target`` (:class:`~torch.Tensor`): An int tensor of shape ``(N, ...)``. |
|
|
|
|
|
As output to ``forward`` and ``compute`` the metric returns the following output: |
|
|
|
- ``bhd`` (:class:`~torch.Tensor`): A tensor whose returned shape depends on the ``multidim_average`` arguments: |
|
|
|
- If ``multidim_average`` is set to ``global``, the metric returns a scalar value. |
|
- If ``multidim_average`` is set to ``samplewise``, the metric returns ``(N,)`` vector consisting of a |
|
scalar value per sample. |
|
|
|
If ``multidim_average`` is set to ``samplewise`` we expect at least one additional dimension ``...`` to be present, |
|
which the reduction will then be applied over instead of the sample dimension ``N``. |
|
|
|
Args: |
|
threshold: Threshold for transforming probability to binary {0,1} predictions |
|
multidim_average: |
|
Defines how additionally dimensions ``...`` should be handled. Should be one of the following: |
|
|
|
- ``global``: Additional dimensions are flatted along the batch dimension |
|
- ``samplewise``: Statistic will be calculated independently for each sample on the ``N`` axis. |
|
The statistics in this case are calculated over the additional dimensions. |
|
|
|
ignore_index: |
|
Specifies a target value that is ignored and does not contribute to the metric calculation |
|
validate_args: bool indicating if input arguments and tensors should be validated for correctness. |
|
Set to ``False`` for faster computations. |
|
|
|
Example (preds is int tensor): |
|
>>> from torch import tensor |
|
>>> from torchmetrics.classification import BinaryHammingDistance |
|
>>> target = tensor([0, 1, 0, 1, 0, 1]) |
|
>>> preds = tensor([0, 0, 1, 1, 0, 1]) |
|
>>> metric = BinaryHammingDistance() |
|
>>> metric(preds, target) |
|
tensor(0.3333) |
|
|
|
Example (preds is float tensor): |
|
>>> from torchmetrics.classification import BinaryHammingDistance |
|
>>> target = tensor([0, 1, 0, 1, 0, 1]) |
|
>>> preds = tensor([0.11, 0.22, 0.84, 0.73, 0.33, 0.92]) |
|
>>> metric = BinaryHammingDistance() |
|
>>> metric(preds, target) |
|
tensor(0.3333) |
|
|
|
Example (multidim tensors): |
|
>>> from torchmetrics.classification import BinaryHammingDistance |
|
>>> target = tensor([[[0, 1], [1, 0], [0, 1]], [[1, 1], [0, 0], [1, 0]]]) |
|
>>> preds = tensor([[[0.59, 0.91], [0.91, 0.99], [0.63, 0.04]], |
|
... [[0.38, 0.04], [0.86, 0.780], [0.45, 0.37]]]) |
|
>>> metric = BinaryHammingDistance(multidim_average='samplewise') |
|
>>> metric(preds, target) |
|
tensor([0.6667, 0.8333]) |
|
|
|
""" |
|
|
|
is_differentiable: bool = False |
|
higher_is_better: bool = False |
|
full_state_update: bool = False |
|
plot_lower_bound: float = 0.0 |
|
plot_upper_bound: float = 1.0 |
|
|
|
def compute(self) -> Tensor: |
|
"""Compute metric.""" |
|
tp, fp, tn, fn = self._final_state() |
|
return _hamming_distance_reduce(tp, fp, tn, fn, average="binary", multidim_average=self.multidim_average) |
|
|
|
def plot( |
|
self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None |
|
) -> _PLOT_OUT_TYPE: |
|
"""Plot a single or multiple values from the metric. |
|
|
|
Args: |
|
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results. |
|
If no value is provided, will automatically call `metric.compute` and plot that result. |
|
ax: An matplotlib axis object. If provided will add plot to that axis |
|
|
|
Returns: |
|
Figure object and Axes object |
|
|
|
Raises: |
|
ModuleNotFoundError: |
|
If `matplotlib` is not installed |
|
|
|
.. plot:: |
|
:scale: 75 |
|
|
|
>>> # Example plotting a single value |
|
>>> from torch import rand, randint |
|
>>> from torchmetrics.classification import BinaryHammingDistance |
|
>>> metric = BinaryHammingDistance() |
|
>>> metric.update(rand(10), randint(2,(10,))) |
|
>>> fig_, ax_ = metric.plot() |
|
|
|
.. plot:: |
|
:scale: 75 |
|
|
|
>>> # Example plotting multiple values |
|
>>> from torch import rand, randint |
|
>>> from torchmetrics.classification import BinaryHammingDistance |
|
>>> metric = BinaryHammingDistance() |
|
>>> values = [ ] |
|
>>> for _ in range(10): |
|
... values.append(metric(rand(10), randint(2,(10,)))) |
|
>>> fig_, ax_ = metric.plot(values) |
|
|
|
""" |
|
return self._plot(val, ax) |
|
|
|
|
|
class MulticlassHammingDistance(MulticlassStatScores): |
|
r"""Compute the average `Hamming distance`_ (also known as Hamming loss) for multiclass tasks. |
|
|
|
.. math:: |
|
\text{Hamming distance} = \frac{1}{N \cdot L} \sum_i^N \sum_l^L 1(y_{il} \neq \hat{y}_{il}) |
|
|
|
Where :math:`y` is a tensor of target values, :math:`\hat{y}` is a tensor of predictions, |
|
and :math:`\bullet_{il}` refers to the :math:`l`-th label of the :math:`i`-th sample of that |
|
tensor. |
|
|
|
As input to ``forward`` and ``update`` the metric accepts the following input: |
|
|
|
- ``preds`` (:class:`~torch.Tensor`): An int tensor of shape ``(N, ...)`` or float tensor of shape ``(N, C, ..)``. |
|
If preds is a floating point we apply ``torch.argmax`` along the ``C`` dimension to automatically convert |
|
probabilities/logits into an int tensor. |
|
- ``target`` (:class:`~torch.Tensor`): An int tensor of shape ``(N, ...)``. |
|
|
|
As output to ``forward`` and ``compute`` the metric returns the following output: |
|
|
|
- ``mchd`` (:class:`~torch.Tensor`): A tensor whose returned shape depends on the ``average`` and |
|
``multidim_average`` arguments: |
|
|
|
- If ``multidim_average`` is set to ``global``: |
|
|
|
- If ``average='micro'/'macro'/'weighted'``, the output will be a scalar tensor |
|
- If ``average=None/'none'``, the shape will be ``(C,)`` |
|
|
|
- If ``multidim_average`` is set to ``samplewise``: |
|
|
|
- If ``average='micro'/'macro'/'weighted'``, the shape will be ``(N,)`` |
|
- If ``average=None/'none'``, the shape will be ``(N, C)`` |
|
|
|
If ``multidim_average`` is set to ``samplewise`` we expect at least one additional dimension ``...`` to be present, |
|
which the reduction will then be applied over instead of the sample dimension ``N``. |
|
|
|
Args: |
|
num_classes: Integer specifying the number of classes |
|
average: |
|
Defines the reduction that is applied over labels. Should be one of the following: |
|
|
|
- ``micro``: Sum statistics over all labels |
|
- ``macro``: Calculate statistics for each label and average them |
|
- ``weighted``: calculates statistics for each label and computes weighted average using their support |
|
- ``"none"`` or ``None``: calculates statistic for each label and applies no reduction |
|
top_k: |
|
Number of highest probability or logit score predictions considered to find the correct label. |
|
Only works when ``preds`` contain probabilities/logits. |
|
multidim_average: |
|
Defines how additionally dimensions ``...`` should be handled. Should be one of the following: |
|
|
|
- ``global``: Additional dimensions are flatted along the batch dimension |
|
- ``samplewise``: Statistic will be calculated independently for each sample on the ``N`` axis. |
|
The statistics in this case are calculated over the additional dimensions. |
|
|
|
ignore_index: |
|
Specifies a target value that is ignored and does not contribute to the metric calculation |
|
validate_args: bool indicating if input arguments and tensors should be validated for correctness. |
|
Set to ``False`` for faster computations. |
|
|
|
Example (preds is int tensor): |
|
>>> from torch import tensor |
|
>>> from torchmetrics.classification import MulticlassHammingDistance |
|
>>> target = tensor([2, 1, 0, 0]) |
|
>>> preds = tensor([2, 1, 0, 1]) |
|
>>> metric = MulticlassHammingDistance(num_classes=3) |
|
>>> metric(preds, target) |
|
tensor(0.1667) |
|
>>> mchd = MulticlassHammingDistance(num_classes=3, average=None) |
|
>>> mchd(preds, target) |
|
tensor([0.5000, 0.0000, 0.0000]) |
|
|
|
Example (preds is float tensor): |
|
>>> from torchmetrics.classification import MulticlassHammingDistance |
|
>>> target = tensor([2, 1, 0, 0]) |
|
>>> preds = tensor([[0.16, 0.26, 0.58], |
|
... [0.22, 0.61, 0.17], |
|
... [0.71, 0.09, 0.20], |
|
... [0.05, 0.82, 0.13]]) |
|
>>> metric = MulticlassHammingDistance(num_classes=3) |
|
>>> metric(preds, target) |
|
tensor(0.1667) |
|
>>> mchd = MulticlassHammingDistance(num_classes=3, average=None) |
|
>>> mchd(preds, target) |
|
tensor([0.5000, 0.0000, 0.0000]) |
|
|
|
Example (multidim tensors): |
|
>>> from torchmetrics.classification import MulticlassHammingDistance |
|
>>> target = tensor([[[0, 1], [2, 1], [0, 2]], [[1, 1], [2, 0], [1, 2]]]) |
|
>>> preds = tensor([[[0, 2], [2, 0], [0, 1]], [[2, 2], [2, 1], [1, 0]]]) |
|
>>> metric = MulticlassHammingDistance(num_classes=3, multidim_average='samplewise') |
|
>>> metric(preds, target) |
|
tensor([0.5000, 0.7222]) |
|
>>> mchd = MulticlassHammingDistance(num_classes=3, multidim_average='samplewise', average=None) |
|
>>> mchd(preds, target) |
|
tensor([[0.0000, 1.0000, 0.5000], |
|
[1.0000, 0.6667, 0.5000]]) |
|
|
|
""" |
|
|
|
is_differentiable: bool = False |
|
higher_is_better: bool = False |
|
full_state_update: bool = False |
|
plot_lower_bound: float = 0.0 |
|
plot_upper_bound: float = 1.0 |
|
plot_legend_name: str = "Class" |
|
|
|
def compute(self) -> Tensor: |
|
"""Compute metric.""" |
|
tp, fp, tn, fn = self._final_state() |
|
return _hamming_distance_reduce(tp, fp, tn, fn, average=self.average, multidim_average=self.multidim_average) |
|
|
|
def plot( |
|
self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None |
|
) -> _PLOT_OUT_TYPE: |
|
"""Plot a single or multiple values from the metric. |
|
|
|
Args: |
|
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results. |
|
If no value is provided, will automatically call `metric.compute` and plot that result. |
|
ax: An matplotlib axis object. If provided will add plot to that axis |
|
|
|
Returns: |
|
Figure object and Axes object |
|
|
|
Raises: |
|
ModuleNotFoundError: |
|
If `matplotlib` is not installed |
|
|
|
.. plot:: |
|
:scale: 75 |
|
|
|
>>> # Example plotting a single value per class |
|
>>> from torch import randint |
|
>>> from torchmetrics.classification import MulticlassHammingDistance |
|
>>> metric = MulticlassHammingDistance(num_classes=3, average=None) |
|
>>> metric.update(randint(3, (20,)), randint(3, (20,))) |
|
>>> fig_, ax_ = metric.plot() |
|
|
|
.. plot:: |
|
:scale: 75 |
|
|
|
>>> # Example plotting a multiple values per class |
|
>>> from torch import randint |
|
>>> from torchmetrics.classification import MulticlassHammingDistance |
|
>>> metric = MulticlassHammingDistance(num_classes=3, average=None) |
|
>>> values = [] |
|
>>> for _ in range(20): |
|
... values.append(metric(randint(3, (20,)), randint(3, (20,)))) |
|
>>> fig_, ax_ = metric.plot(values) |
|
|
|
""" |
|
return self._plot(val, ax) |
|
|
|
|
|
class MultilabelHammingDistance(MultilabelStatScores): |
|
r"""Compute the average `Hamming distance`_ (also known as Hamming loss) for multilabel tasks. |
|
|
|
.. math:: |
|
\text{Hamming distance} = \frac{1}{N \cdot L} \sum_i^N \sum_l^L 1(y_{il} \neq \hat{y}_{il}) |
|
|
|
Where :math:`y` is a tensor of target values, :math:`\hat{y}` is a tensor of predictions, |
|
and :math:`\bullet_{il}` refers to the :math:`l`-th label of the :math:`i`-th sample of that |
|
tensor. |
|
|
|
As input to ``forward`` and ``update`` the metric accepts the following input: |
|
|
|
- ``preds`` (:class:`~torch.Tensor`): An int tensor or float tensor of shape ``(N, C, ...)``. If preds is a |
|
floating point tensor with values outside [0,1] range we consider the input to be logits and will auto |
|
apply sigmoid per element. Additionally, we convert to int tensor with thresholding using the value in |
|
``threshold``. |
|
- ``target`` (:class:`~torch.Tensor`): An int tensor of shape ``(N, C, ...)``. |
|
|
|
As output to ``forward`` and ``compute`` the metric returns the following output: |
|
|
|
- ``mlhd`` (:class:`~torch.Tensor`): A tensor whose returned shape depends on the ``average`` and |
|
``multidim_average`` arguments: |
|
|
|
- If ``multidim_average`` is set to ``global``: |
|
|
|
- If ``average='micro'/'macro'/'weighted'``, the output will be a scalar tensor |
|
- If ``average=None/'none'``, the shape will be ``(C,)`` |
|
|
|
- If ``multidim_average`` is set to ``samplewise``: |
|
|
|
- If ``average='micro'/'macro'/'weighted'``, the shape will be ``(N,)`` |
|
- If ``average=None/'none'``, the shape will be ``(N, C)`` |
|
|
|
If ``multidim_average`` is set to ``samplewise`` we expect at least one additional dimension ``...`` to be present, |
|
which the reduction will then be applied over instead of the sample dimension ``N``. |
|
|
|
Args: |
|
num_labels: Integer specifying the number of labels |
|
threshold: Threshold for transforming probability to binary (0,1) predictions |
|
average: |
|
Defines the reduction that is applied over labels. Should be one of the following: |
|
|
|
- ``micro``: Sum statistics over all labels |
|
- ``macro``: Calculate statistics for each label and average them |
|
- ``weighted``: calculates statistics for each label and computes weighted average using their support |
|
- ``"none"`` or ``None``: calculates statistic for each label and applies no reduction |
|
|
|
multidim_average: |
|
Defines how additionally dimensions ``...`` should be handled. Should be one of the following: |
|
|
|
- ``global``: Additional dimensions are flatted along the batch dimension |
|
- ``samplewise``: Statistic will be calculated independently for each sample on the ``N`` axis. |
|
The statistics in this case are calculated over the additional dimensions. |
|
|
|
ignore_index: |
|
Specifies a target value that is ignored and does not contribute to the metric calculation |
|
validate_args: bool indicating if input arguments and tensors should be validated for correctness. |
|
Set to ``False`` for faster computations. |
|
|
|
Example (preds is int tensor): |
|
>>> from torch import tensor |
|
>>> from torchmetrics.classification import MultilabelHammingDistance |
|
>>> target = tensor([[0, 1, 0], [1, 0, 1]]) |
|
>>> preds = tensor([[0, 0, 1], [1, 0, 1]]) |
|
>>> metric = MultilabelHammingDistance(num_labels=3) |
|
>>> metric(preds, target) |
|
tensor(0.3333) |
|
>>> mlhd = MultilabelHammingDistance(num_labels=3, average=None) |
|
>>> mlhd(preds, target) |
|
tensor([0.0000, 0.5000, 0.5000]) |
|
|
|
Example (preds is float tensor): |
|
>>> from torchmetrics.classification import MultilabelHammingDistance |
|
>>> target = tensor([[0, 1, 0], [1, 0, 1]]) |
|
>>> preds = tensor([[0.11, 0.22, 0.84], [0.73, 0.33, 0.92]]) |
|
>>> metric = MultilabelHammingDistance(num_labels=3) |
|
>>> metric(preds, target) |
|
tensor(0.3333) |
|
>>> mlhd = MultilabelHammingDistance(num_labels=3, average=None) |
|
>>> mlhd(preds, target) |
|
tensor([0.0000, 0.5000, 0.5000]) |
|
|
|
Example (multidim tensors): |
|
>>> from torchmetrics.classification import MultilabelHammingDistance |
|
>>> target = tensor([[[0, 1], [1, 0], [0, 1]], [[1, 1], [0, 0], [1, 0]]]) |
|
>>> preds = tensor([[[0.59, 0.91], [0.91, 0.99], [0.63, 0.04]], |
|
... [[0.38, 0.04], [0.86, 0.780], [0.45, 0.37]]]) |
|
>>> metric = MultilabelHammingDistance(num_labels=3, multidim_average='samplewise') |
|
>>> metric(preds, target) |
|
tensor([0.6667, 0.8333]) |
|
>>> mlhd = MultilabelHammingDistance(num_labels=3, multidim_average='samplewise', average=None) |
|
>>> mlhd(preds, target) |
|
tensor([[0.5000, 0.5000, 1.0000], |
|
[1.0000, 1.0000, 0.5000]]) |
|
|
|
""" |
|
|
|
is_differentiable: bool = False |
|
higher_is_better: bool = False |
|
full_state_update: bool = False |
|
plot_lower_bound: float = 0.0 |
|
plot_upper_bound: float = 1.0 |
|
plot_legend_name: str = "Label" |
|
|
|
def compute(self) -> Tensor: |
|
"""Compute metric.""" |
|
tp, fp, tn, fn = self._final_state() |
|
return _hamming_distance_reduce( |
|
tp, fp, tn, fn, average=self.average, multidim_average=self.multidim_average, multilabel=True |
|
) |
|
|
|
def plot( |
|
self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None |
|
) -> _PLOT_OUT_TYPE: |
|
"""Plot a single or multiple values from the metric. |
|
|
|
Args: |
|
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results. |
|
If no value is provided, will automatically call `metric.compute` and plot that result. |
|
ax: An matplotlib axis object. If provided will add plot to that axis |
|
|
|
Returns: |
|
Figure and Axes object |
|
|
|
Raises: |
|
ModuleNotFoundError: |
|
If `matplotlib` is not installed |
|
|
|
.. plot:: |
|
:scale: 75 |
|
|
|
>>> # Example plotting a single value |
|
>>> from torch import rand, randint |
|
>>> from torchmetrics.classification import MultilabelHammingDistance |
|
>>> metric = MultilabelHammingDistance(num_labels=3) |
|
>>> metric.update(randint(2, (20, 3)), randint(2, (20, 3))) |
|
>>> fig_, ax_ = metric.plot() |
|
|
|
.. plot:: |
|
:scale: 75 |
|
|
|
>>> # Example plotting multiple values |
|
>>> from torch import rand, randint |
|
>>> from torchmetrics.classification import MultilabelHammingDistance |
|
>>> metric = MultilabelHammingDistance(num_labels=3) |
|
>>> values = [ ] |
|
>>> for _ in range(10): |
|
... values.append(metric(randint(2, (20, 3)), randint(2, (20, 3)))) |
|
>>> fig_, ax_ = metric.plot(values) |
|
|
|
""" |
|
return self._plot(val, ax) |
|
|
|
|
|
class HammingDistance(_ClassificationTaskWrapper): |
|
r"""Compute the average `Hamming distance`_ (also known as Hamming loss). |
|
|
|
.. math:: |
|
\text{Hamming distance} = \frac{1}{N \cdot L} \sum_i^N \sum_l^L 1(y_{il} \neq \hat{y}_{il}) |
|
|
|
Where :math:`y` is a tensor of target values, :math:`\hat{y}` is a tensor of predictions, |
|
and :math:`\bullet_{il}` refers to the :math:`l`-th label of the :math:`i`-th sample of that |
|
tensor. |
|
|
|
This function is a simple wrapper to get the task specific versions of this metric, which is done by setting the |
|
``task`` argument to either ``'binary'``, ``'multiclass'`` or ``multilabel``. See the documentation of |
|
:class:`~torchmetrics.classification.BinaryHammingDistance`, |
|
:class:`~torchmetrics.classification.MulticlassHammingDistance` and |
|
:class:`~torchmetrics.classification.MultilabelHammingDistance` for the specific details of each argument influence |
|
and examples. |
|
|
|
Legacy Example: |
|
>>> from torch import tensor |
|
>>> target = tensor([[0, 1], [1, 1]]) |
|
>>> preds = tensor([[0, 1], [0, 1]]) |
|
>>> hamming_distance = HammingDistance(task="multilabel", num_labels=2) |
|
>>> hamming_distance(preds, target) |
|
tensor(0.2500) |
|
|
|
""" |
|
|
|
def __new__( |
|
cls: type["HammingDistance"], |
|
task: Literal["binary", "multiclass", "multilabel"], |
|
threshold: float = 0.5, |
|
num_classes: Optional[int] = None, |
|
num_labels: Optional[int] = None, |
|
average: Optional[Literal["micro", "macro", "weighted", "none"]] = "micro", |
|
multidim_average: Optional[Literal["global", "samplewise"]] = "global", |
|
top_k: Optional[int] = 1, |
|
ignore_index: Optional[int] = None, |
|
validate_args: bool = True, |
|
**kwargs: Any, |
|
) -> Metric: |
|
"""Initialize task metric.""" |
|
task = ClassificationTask.from_str(task) |
|
assert multidim_average is not None |
|
kwargs.update({ |
|
"multidim_average": multidim_average, |
|
"ignore_index": ignore_index, |
|
"validate_args": validate_args, |
|
}) |
|
if task == ClassificationTask.BINARY: |
|
return BinaryHammingDistance(threshold, **kwargs) |
|
if task == ClassificationTask.MULTICLASS: |
|
if not isinstance(num_classes, int): |
|
raise ValueError(f"`num_classes` is expected to be `int` but `{type(num_classes)} was passed.`") |
|
if not isinstance(top_k, int): |
|
raise ValueError(f"`top_k` is expected to be `int` but `{type(top_k)} was passed.`") |
|
return MulticlassHammingDistance(num_classes, top_k, average, **kwargs) |
|
if task == ClassificationTask.MULTILABEL: |
|
if not isinstance(num_labels, int): |
|
raise ValueError(f"`num_labels` is expected to be `int` but `{type(num_labels)} was passed.`") |
|
return MultilabelHammingDistance(num_labels, threshold, average, **kwargs) |
|
raise ValueError(f"Task {task} not supported!") |
|
|