|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from collections.abc import Sequence |
|
from typing import Any, Optional, Union |
|
|
|
from torch import Tensor |
|
from typing_extensions import Literal |
|
|
|
from torchmetrics.classification.base import _ClassificationTaskWrapper |
|
from torchmetrics.classification.stat_scores import BinaryStatScores, MulticlassStatScores, MultilabelStatScores |
|
from torchmetrics.functional.classification.f_beta import ( |
|
_binary_fbeta_score_arg_validation, |
|
_fbeta_reduce, |
|
_multiclass_fbeta_score_arg_validation, |
|
_multilabel_fbeta_score_arg_validation, |
|
) |
|
from torchmetrics.metric import Metric |
|
from torchmetrics.utilities.enums import ClassificationTask |
|
from torchmetrics.utilities.imports import _MATPLOTLIB_AVAILABLE |
|
from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE |
|
|
|
if not _MATPLOTLIB_AVAILABLE: |
|
__doctest_skip__ = [ |
|
"BinaryFBetaScore.plot", |
|
"MulticlassFBetaScore.plot", |
|
"MultilabelFBetaScore.plot", |
|
"BinaryF1Score.plot", |
|
"MulticlassF1Score.plot", |
|
"MultilabelF1Score.plot", |
|
] |
|
|
|
|
|
class BinaryFBetaScore(BinaryStatScores): |
|
r"""Compute `F-score`_ metric for binary tasks. |
|
|
|
.. math:: |
|
F_{\beta} = (1 + \beta^2) * \frac{\text{precision} * \text{recall}} |
|
{(\beta^2 * \text{precision}) + \text{recall}} |
|
|
|
The metric is only proper defined when :math:`\text{TP} + \text{FP} \neq 0 \wedge \text{TP} + \text{FN} \neq 0` |
|
where :math:`\text{TP}`, :math:`\text{FP}` and :math:`\text{FN}` represent the number of true positives, false |
|
positives and false negatives respectively. If this case is encountered a score of `zero_division` |
|
(0 or 1, default is 0) is returned. |
|
|
|
As input to ``forward`` and ``update`` the metric accepts the following input: |
|
|
|
- ``preds`` (:class:`~torch.Tensor`): An int tensor or float tensor of shape ``(N, ...)``. If preds is a floating |
|
point tensor with values outside [0,1] range we consider the input to be logits and will auto apply sigmoid |
|
per element. Additionally, we convert to int tensor with thresholding using the value in ``threshold``. |
|
- ``target`` (:class:`~torch.Tensor`): An int tensor of shape ``(N, ...)``. |
|
|
|
As output to ``forward`` and ``compute`` the metric returns the following output: |
|
|
|
- ``bfbs`` (:class:`~torch.Tensor`): A tensor whose returned shape depends on the ``multidim_average`` argument: |
|
|
|
- If ``multidim_average`` is set to ``global`` the output will be a scalar tensor |
|
- If ``multidim_average`` is set to ``samplewise`` the output will be a tensor of shape ``(N,)`` consisting of |
|
a scalar value per sample. |
|
|
|
If ``multidim_average`` is set to ``samplewise`` we expect at least one additional dimension ``...`` to be present, |
|
which the reduction will then be applied over instead of the sample dimension ``N``. |
|
|
|
Args: |
|
beta: Weighting between precision and recall in calculation. Setting to 1 corresponds to equal weight |
|
threshold: Threshold for transforming probability to binary {0,1} predictions |
|
multidim_average: |
|
Defines how additionally dimensions ``...`` should be handled. Should be one of the following: |
|
|
|
- ``global``: Additional dimensions are flatted along the batch dimension |
|
- ``samplewise``: Statistic will be calculated independently for each sample on the ``N`` axis. |
|
The statistics in this case are calculated over the additional dimensions. |
|
|
|
ignore_index: |
|
Specifies a target value that is ignored and does not contribute to the metric calculation |
|
validate_args: bool indicating if input arguments and tensors should be validated for correctness. |
|
Set to ``False`` for faster computations. |
|
zero_division: Should be `0` or `1`. The value returned when |
|
:math:`\text{TP} + \text{FP} = 0 \wedge \text{TP} + \text{FN} = 0`. |
|
|
|
Example (preds is int tensor): |
|
>>> from torch import tensor |
|
>>> from torchmetrics.classification import BinaryFBetaScore |
|
>>> target = tensor([0, 1, 0, 1, 0, 1]) |
|
>>> preds = tensor([0, 0, 1, 1, 0, 1]) |
|
>>> metric = BinaryFBetaScore(beta=2.0) |
|
>>> metric(preds, target) |
|
tensor(0.6667) |
|
|
|
Example (preds is float tensor): |
|
>>> from torchmetrics.classification import BinaryFBetaScore |
|
>>> target = tensor([0, 1, 0, 1, 0, 1]) |
|
>>> preds = tensor([0.11, 0.22, 0.84, 0.73, 0.33, 0.92]) |
|
>>> metric = BinaryFBetaScore(beta=2.0) |
|
>>> metric(preds, target) |
|
tensor(0.6667) |
|
|
|
Example (multidim tensors): |
|
>>> from torchmetrics.classification import BinaryFBetaScore |
|
>>> target = tensor([[[0, 1], [1, 0], [0, 1]], [[1, 1], [0, 0], [1, 0]]]) |
|
>>> preds = tensor([[[0.59, 0.91], [0.91, 0.99], [0.63, 0.04]], |
|
... [[0.38, 0.04], [0.86, 0.780], [0.45, 0.37]]]) |
|
>>> metric = BinaryFBetaScore(beta=2.0, multidim_average='samplewise') |
|
>>> metric(preds, target) |
|
tensor([0.5882, 0.0000]) |
|
|
|
""" |
|
|
|
is_differentiable: bool = False |
|
higher_is_better: Optional[bool] = True |
|
full_state_update: bool = False |
|
plot_lower_bound: float = 0.0 |
|
plot_upper_bound: float = 1.0 |
|
|
|
def __init__( |
|
self, |
|
beta: float, |
|
threshold: float = 0.5, |
|
multidim_average: Literal["global", "samplewise"] = "global", |
|
ignore_index: Optional[int] = None, |
|
validate_args: bool = True, |
|
zero_division: float = 0, |
|
**kwargs: Any, |
|
) -> None: |
|
super().__init__( |
|
threshold=threshold, |
|
multidim_average=multidim_average, |
|
ignore_index=ignore_index, |
|
validate_args=False, |
|
**kwargs, |
|
) |
|
if validate_args: |
|
_binary_fbeta_score_arg_validation(beta, threshold, multidim_average, ignore_index, zero_division) |
|
self.validate_args = validate_args |
|
self.zero_division = zero_division |
|
self.beta = beta |
|
|
|
def compute(self) -> Tensor: |
|
"""Compute metric.""" |
|
tp, fp, tn, fn = self._final_state() |
|
return _fbeta_reduce( |
|
tp, |
|
fp, |
|
tn, |
|
fn, |
|
self.beta, |
|
average="binary", |
|
multidim_average=self.multidim_average, |
|
zero_division=self.zero_division, |
|
) |
|
|
|
def plot( |
|
self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None |
|
) -> _PLOT_OUT_TYPE: |
|
"""Plot a single or multiple values from the metric. |
|
|
|
Args: |
|
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results. |
|
If no value is provided, will automatically call `metric.compute` and plot that result. |
|
ax: An matplotlib axis object. If provided will add plot to that axis |
|
|
|
Returns: |
|
Figure object and Axes object |
|
|
|
Raises: |
|
ModuleNotFoundError: |
|
If `matplotlib` is not installed |
|
|
|
.. plot:: |
|
:scale: 75 |
|
|
|
>>> from torch import rand, randint |
|
>>> # Example plotting a single value |
|
>>> from torchmetrics.classification import BinaryFBetaScore |
|
>>> metric = BinaryFBetaScore(beta=2.0) |
|
>>> metric.update(rand(10), randint(2,(10,))) |
|
>>> fig_, ax_ = metric.plot() |
|
|
|
.. plot:: |
|
:scale: 75 |
|
|
|
>>> from torch import rand, randint |
|
>>> # Example plotting multiple values |
|
>>> from torchmetrics.classification import BinaryFBetaScore |
|
>>> metric = BinaryFBetaScore(beta=2.0) |
|
>>> values = [ ] |
|
>>> for _ in range(10): |
|
... values.append(metric(rand(10), randint(2,(10,)))) |
|
>>> fig_, ax_ = metric.plot(values) |
|
|
|
""" |
|
return self._plot(val, ax) |
|
|
|
|
|
class MulticlassFBetaScore(MulticlassStatScores): |
|
r"""Compute `F-score`_ metric for multiclass tasks. |
|
|
|
.. math:: |
|
F_{\beta} = (1 + \beta^2) * \frac{\text{precision} * \text{recall}} |
|
{(\beta^2 * \text{precision}) + \text{recall}} |
|
|
|
The metric is only proper defined when :math:`\text{TP} + \text{FP} \neq 0 \wedge \text{TP} + \text{FN} \neq 0` |
|
where :math:`\text{TP}`, :math:`\text{FP}` and :math:`\text{FN}` represent the number of true positives, false |
|
positives and false negatives respectively. If this case is encountered for any class, the metric for that class |
|
will be set to `zero_division` (0 or 1, default is 0) and the overall metric may therefore be affected in turn. |
|
|
|
As input to ``forward`` and ``update`` the metric accepts the following input: |
|
|
|
- ``preds`` (:class:`~torch.Tensor`): An int tensor of shape ``(N, ...)`` or float tensor of shape ``(N, C, ..)``. |
|
If preds is a floating point we apply ``torch.argmax`` along the ``C`` dimension to automatically convert |
|
probabilities/logits into an int tensor. |
|
- ``target`` (:class:`~torch.Tensor`): An int tensor of shape ``(N, ...)``. |
|
|
|
As output to ``forward`` and ``compute`` the metric returns the following output: |
|
|
|
- ``mcfbs`` (:class:`~torch.Tensor`): A tensor whose returned shape depends on the ``average`` and |
|
``multidim_average`` arguments: |
|
|
|
- If ``multidim_average`` is set to ``global``: |
|
|
|
- If ``average='micro'/'macro'/'weighted'``, the output will be a scalar tensor |
|
- If ``average=None/'none'``, the shape will be ``(C,)`` |
|
|
|
- If ``multidim_average`` is set to ``samplewise``: |
|
|
|
- If ``average='micro'/'macro'/'weighted'``, the shape will be ``(N,)`` |
|
- If ``average=None/'none'``, the shape will be ``(N, C)`` |
|
|
|
If ``multidim_average`` is set to ``samplewise`` we expect at least one additional dimension ``...`` to be present, |
|
which the reduction will then be applied over instead of the sample dimension ``N``. |
|
|
|
Args: |
|
beta: Weighting between precision and recall in calculation. Setting to 1 corresponds to equal weight |
|
num_classes: Integer specifying the number of classes |
|
average: |
|
Defines the reduction that is applied over labels. Should be one of the following: |
|
|
|
- ``micro``: Sum statistics over all labels |
|
- ``macro``: Calculate statistics for each label and average them |
|
- ``weighted``: calculates statistics for each label and computes weighted average using their support |
|
- ``"none"`` or ``None``: calculates statistic for each label and applies no reduction |
|
top_k: |
|
|
|
Number of highest probability or logit score predictions considered to find the correct label. |
|
Only works when ``preds`` contain probabilities/logits. |
|
multidim_average: |
|
Defines how additionally dimensions ``...`` should be handled. Should be one of the following: |
|
|
|
- ``global``: Additional dimensions are flatted along the batch dimension |
|
- ``samplewise``: Statistic will be calculated independently for each sample on the ``N`` axis. |
|
The statistics in this case are calculated over the additional dimensions. |
|
|
|
ignore_index: |
|
Specifies a target value that is ignored and does not contribute to the metric calculation |
|
validate_args: bool indicating if input arguments and tensors should be validated for correctness. |
|
Set to ``False`` for faster computations. |
|
zero_division: Should be `0` or `1`. The value returned when |
|
:math:`\text{TP} + \text{FP} = 0 \wedge \text{TP} + \text{FN} = 0`. |
|
|
|
Example (preds is int tensor): |
|
>>> from torch import tensor |
|
>>> from torchmetrics.classification import MulticlassFBetaScore |
|
>>> target = tensor([2, 1, 0, 0]) |
|
>>> preds = tensor([2, 1, 0, 1]) |
|
>>> metric = MulticlassFBetaScore(beta=2.0, num_classes=3) |
|
>>> metric(preds, target) |
|
tensor(0.7963) |
|
>>> mcfbs = MulticlassFBetaScore(beta=2.0, num_classes=3, average=None) |
|
>>> mcfbs(preds, target) |
|
tensor([0.5556, 0.8333, 1.0000]) |
|
|
|
Example (preds is float tensor): |
|
>>> from torchmetrics.classification import MulticlassFBetaScore |
|
>>> target = tensor([2, 1, 0, 0]) |
|
>>> preds = tensor([[0.16, 0.26, 0.58], |
|
... [0.22, 0.61, 0.17], |
|
... [0.71, 0.09, 0.20], |
|
... [0.05, 0.82, 0.13]]) |
|
>>> metric = MulticlassFBetaScore(beta=2.0, num_classes=3) |
|
>>> metric(preds, target) |
|
tensor(0.7963) |
|
>>> mcfbs = MulticlassFBetaScore(beta=2.0, num_classes=3, average=None) |
|
>>> mcfbs(preds, target) |
|
tensor([0.5556, 0.8333, 1.0000]) |
|
|
|
Example (multidim tensors): |
|
>>> from torchmetrics.classification import MulticlassFBetaScore |
|
>>> target = tensor([[[0, 1], [2, 1], [0, 2]], [[1, 1], [2, 0], [1, 2]]]) |
|
>>> preds = tensor([[[0, 2], [2, 0], [0, 1]], [[2, 2], [2, 1], [1, 0]]]) |
|
>>> metric = MulticlassFBetaScore(beta=2.0, num_classes=3, multidim_average='samplewise') |
|
>>> metric(preds, target) |
|
tensor([0.4697, 0.2706]) |
|
>>> mcfbs = MulticlassFBetaScore(beta=2.0, num_classes=3, multidim_average='samplewise', average=None) |
|
>>> mcfbs(preds, target) |
|
tensor([[0.9091, 0.0000, 0.5000], |
|
[0.0000, 0.3571, 0.4545]]) |
|
|
|
""" |
|
|
|
is_differentiable: bool = False |
|
higher_is_better: Optional[bool] = True |
|
full_state_update: bool = False |
|
plot_lower_bound: float = 0.0 |
|
plot_upper_bound: float = 1.0 |
|
plot_legend_name: str = "Class" |
|
|
|
def __init__( |
|
self, |
|
beta: float, |
|
num_classes: int, |
|
top_k: int = 1, |
|
average: Optional[Literal["micro", "macro", "weighted", "none"]] = "macro", |
|
multidim_average: Literal["global", "samplewise"] = "global", |
|
ignore_index: Optional[int] = None, |
|
validate_args: bool = True, |
|
zero_division: float = 0, |
|
**kwargs: Any, |
|
) -> None: |
|
super().__init__( |
|
num_classes=num_classes, |
|
top_k=top_k, |
|
average=average, |
|
multidim_average=multidim_average, |
|
ignore_index=ignore_index, |
|
validate_args=False, |
|
**kwargs, |
|
) |
|
if validate_args: |
|
_multiclass_fbeta_score_arg_validation( |
|
beta, num_classes, top_k, average, multidim_average, ignore_index, zero_division |
|
) |
|
self.validate_args = validate_args |
|
self.zero_division = zero_division |
|
self.beta = beta |
|
|
|
def compute(self) -> Tensor: |
|
"""Compute metric.""" |
|
tp, fp, tn, fn = self._final_state() |
|
return _fbeta_reduce( |
|
tp, |
|
fp, |
|
tn, |
|
fn, |
|
self.beta, |
|
average=self.average, |
|
multidim_average=self.multidim_average, |
|
zero_division=self.zero_division, |
|
) |
|
|
|
def plot( |
|
self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None |
|
) -> _PLOT_OUT_TYPE: |
|
"""Plot a single or multiple values from the metric. |
|
|
|
Args: |
|
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results. |
|
If no value is provided, will automatically call `metric.compute` and plot that result. |
|
ax: An matplotlib axis object. If provided will add plot to that axis |
|
|
|
Returns: |
|
Figure object and Axes object |
|
|
|
Raises: |
|
ModuleNotFoundError: |
|
If `matplotlib` is not installed |
|
|
|
.. plot:: |
|
:scale: 75 |
|
|
|
>>> from torch import randint |
|
>>> # Example plotting a single value per class |
|
>>> from torchmetrics.classification import MulticlassFBetaScore |
|
>>> metric = MulticlassFBetaScore(num_classes=3, beta=2.0, average=None) |
|
>>> metric.update(randint(3, (20,)), randint(3, (20,))) |
|
>>> fig_, ax_ = metric.plot() |
|
|
|
.. plot:: |
|
:scale: 75 |
|
|
|
>>> from torch import randint |
|
>>> # Example plotting a multiple values per class |
|
>>> from torchmetrics.classification import MulticlassFBetaScore |
|
>>> metric = MulticlassFBetaScore(num_classes=3, beta=2.0, average=None) |
|
>>> values = [] |
|
>>> for _ in range(20): |
|
... values.append(metric(randint(3, (20,)), randint(3, (20,)))) |
|
>>> fig_, ax_ = metric.plot(values) |
|
|
|
""" |
|
return self._plot(val, ax) |
|
|
|
|
|
class MultilabelFBetaScore(MultilabelStatScores): |
|
r"""Compute `F-score`_ metric for multilabel tasks. |
|
|
|
.. math:: |
|
F_{\beta} = (1 + \beta^2) * \frac{\text{precision} * \text{recall}} |
|
{(\beta^2 * \text{precision}) + \text{recall}} |
|
|
|
The metric is only proper defined when :math:`\text{TP} + \text{FP} \neq 0 \wedge \text{TP} + \text{FN} \neq 0` |
|
where :math:`\text{TP}`, :math:`\text{FP}` and :math:`\text{FN}` represent the number of true positives, false |
|
positives and false negatives respectively. If this case is encountered for any label, the metric for that label |
|
will be set to `zero_division` (0 or 1, default is 0) and the overall metric may therefore be affected in turn. |
|
|
|
As input to ``forward`` and ``update`` the metric accepts the following input: |
|
|
|
- ``preds`` (:class:`~torch.Tensor`): An int or float tensor of shape ``(N, C, ...)``. If preds is a floating |
|
point tensor with values outside [0,1] range we consider the input to be logits and will auto apply sigmoid |
|
per element. Additionally, we convert to int tensor with thresholding using the value in ``threshold``. |
|
- ``target`` (:class:`~torch.Tensor`): An int tensor of shape ``(N, C, ...)``. |
|
|
|
As output to ``forward`` and ``compute`` the metric returns the following output: |
|
|
|
- ``mlfbs`` (:class:`~torch.Tensor`): A tensor whose returned shape depends on the ``average`` and |
|
``multidim_average`` arguments: |
|
|
|
- If ``multidim_average`` is set to ``global``: |
|
|
|
- If ``average='micro'/'macro'/'weighted'``, the output will be a scalar tensor |
|
- If ``average=None/'none'``, the shape will be ``(C,)`` |
|
|
|
- If ``multidim_average`` is set to ``samplewise``: |
|
|
|
- If ``average='micro'/'macro'/'weighted'``, the shape will be ``(N,)`` |
|
- If ``average=None/'none'``, the shape will be ``(N, C)`` |
|
|
|
If ``multidim_average`` is set to ``samplewise`` we expect at least one additional dimension ``...`` to be present, |
|
which the reduction will then be applied over instead of the sample dimension ``N``. |
|
|
|
Args: |
|
beta: Weighting between precision and recall in calculation. Setting to 1 corresponds to equal weight |
|
num_labels: Integer specifying the number of labels |
|
threshold: Threshold for transforming probability to binary (0,1) predictions |
|
average: |
|
Defines the reduction that is applied over labels. Should be one of the following: |
|
|
|
- ``micro``: Sum statistics over all labels |
|
- ``macro``: Calculate statistics for each label and average them |
|
- ``weighted``: calculates statistics for each label and computes weighted average using their support |
|
- ``"none"`` or ``None``: calculates statistic for each label and applies no reduction |
|
|
|
multidim_average: |
|
Defines how additionally dimensions ``...`` should be handled. Should be one of the following: |
|
|
|
- ``global``: Additional dimensions are flatted along the batch dimension |
|
- ``samplewise``: Statistic will be calculated independently for each sample on the ``N`` axis. |
|
The statistics in this case are calculated over the additional dimensions. |
|
|
|
ignore_index: |
|
Specifies a target value that is ignored and does not contribute to the metric calculation |
|
validate_args: bool indicating if input arguments and tensors should be validated for correctness. |
|
Set to ``False`` for faster computations. |
|
zero_division: Should be `0` or `1`. The value returned when |
|
:math:`\text{TP} + \text{FP} = 0 \wedge \text{TP} + \text{FN} = 0`. |
|
|
|
Example (preds is int tensor): |
|
>>> from torch import tensor |
|
>>> from torchmetrics.classification import MultilabelFBetaScore |
|
>>> target = tensor([[0, 1, 0], [1, 0, 1]]) |
|
>>> preds = tensor([[0, 0, 1], [1, 0, 1]]) |
|
>>> metric = MultilabelFBetaScore(beta=2.0, num_labels=3) |
|
>>> metric(preds, target) |
|
tensor(0.6111) |
|
>>> mlfbs = MultilabelFBetaScore(beta=2.0, num_labels=3, average=None) |
|
>>> mlfbs(preds, target) |
|
tensor([1.0000, 0.0000, 0.8333]) |
|
|
|
Example (preds is float tensor): |
|
>>> from torchmetrics.classification import MultilabelFBetaScore |
|
>>> target = tensor([[0, 1, 0], [1, 0, 1]]) |
|
>>> preds = tensor([[0.11, 0.22, 0.84], [0.73, 0.33, 0.92]]) |
|
>>> metric = MultilabelFBetaScore(beta=2.0, num_labels=3) |
|
>>> metric(preds, target) |
|
tensor(0.6111) |
|
>>> mlfbs = MultilabelFBetaScore(beta=2.0, num_labels=3, average=None) |
|
>>> mlfbs(preds, target) |
|
tensor([1.0000, 0.0000, 0.8333]) |
|
|
|
Example (multidim tensors): |
|
>>> from torchmetrics.classification import MultilabelFBetaScore |
|
>>> target = tensor([[[0, 1], [1, 0], [0, 1]], [[1, 1], [0, 0], [1, 0]]]) |
|
>>> preds = tensor([[[0.59, 0.91], [0.91, 0.99], [0.63, 0.04]], |
|
... [[0.38, 0.04], [0.86, 0.780], [0.45, 0.37]]]) |
|
>>> metric = MultilabelFBetaScore(num_labels=3, beta=2.0, multidim_average='samplewise') |
|
>>> metric(preds, target) |
|
tensor([0.5556, 0.0000]) |
|
>>> mlfbs = MultilabelFBetaScore(num_labels=3, beta=2.0, multidim_average='samplewise', average=None) |
|
>>> mlfbs(preds, target) |
|
tensor([[0.8333, 0.8333, 0.0000], |
|
[0.0000, 0.0000, 0.0000]]) |
|
|
|
""" |
|
|
|
is_differentiable: bool = False |
|
higher_is_better: Optional[bool] = True |
|
full_state_update: bool = False |
|
plot_lower_bound: float = 0.0 |
|
plot_upper_bound: float = 1.0 |
|
plot_legend_name: str = "Label" |
|
|
|
def __init__( |
|
self, |
|
beta: float, |
|
num_labels: int, |
|
threshold: float = 0.5, |
|
average: Optional[Literal["micro", "macro", "weighted", "none"]] = "macro", |
|
multidim_average: Literal["global", "samplewise"] = "global", |
|
ignore_index: Optional[int] = None, |
|
validate_args: bool = True, |
|
zero_division: float = 0, |
|
**kwargs: Any, |
|
) -> None: |
|
super().__init__( |
|
num_labels=num_labels, |
|
threshold=threshold, |
|
average=average, |
|
multidim_average=multidim_average, |
|
ignore_index=ignore_index, |
|
validate_args=False, |
|
**kwargs, |
|
) |
|
if validate_args: |
|
_multilabel_fbeta_score_arg_validation( |
|
beta, num_labels, threshold, average, multidim_average, ignore_index, zero_division |
|
) |
|
self.validate_args = validate_args |
|
self.zero_division = zero_division |
|
self.beta = beta |
|
|
|
def compute(self) -> Tensor: |
|
"""Compute metric.""" |
|
tp, fp, tn, fn = self._final_state() |
|
return _fbeta_reduce( |
|
tp, |
|
fp, |
|
tn, |
|
fn, |
|
self.beta, |
|
average=self.average, |
|
multidim_average=self.multidim_average, |
|
multilabel=True, |
|
zero_division=self.zero_division, |
|
) |
|
|
|
def plot( |
|
self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None |
|
) -> _PLOT_OUT_TYPE: |
|
"""Plot a single or multiple values from the metric. |
|
|
|
Args: |
|
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results. |
|
If no value is provided, will automatically call `metric.compute` and plot that result. |
|
ax: An matplotlib axis object. If provided will add plot to that axis |
|
|
|
Returns: |
|
Figure and Axes object |
|
|
|
Raises: |
|
ModuleNotFoundError: |
|
If `matplotlib` is not installed |
|
|
|
.. plot:: |
|
:scale: 75 |
|
|
|
>>> from torch import rand, randint |
|
>>> # Example plotting a single value |
|
>>> from torchmetrics.classification import MultilabelFBetaScore |
|
>>> metric = MultilabelFBetaScore(num_labels=3, beta=2.0) |
|
>>> metric.update(randint(2, (20, 3)), randint(2, (20, 3))) |
|
>>> fig_, ax_ = metric.plot() |
|
|
|
.. plot:: |
|
:scale: 75 |
|
|
|
>>> from torch import rand, randint |
|
>>> # Example plotting multiple values |
|
>>> from torchmetrics.classification import MultilabelFBetaScore |
|
>>> metric = MultilabelFBetaScore(num_labels=3, beta=2.0) |
|
>>> values = [ ] |
|
>>> for _ in range(10): |
|
... values.append(metric(randint(2, (20, 3)), randint(2, (20, 3)))) |
|
>>> fig_, ax_ = metric.plot(values) |
|
|
|
""" |
|
return self._plot(val, ax) |
|
|
|
|
|
class BinaryF1Score(BinaryFBetaScore): |
|
r"""Compute F-1 score for binary tasks. |
|
|
|
.. math:: |
|
F_{1} = 2\frac{\text{precision} * \text{recall}}{(\text{precision}) + \text{recall}} |
|
|
|
The metric is only proper defined when :math:`\text{TP} + \text{FP} \neq 0 \wedge \text{TP} + \text{FN} \neq 0` |
|
where :math:`\text{TP}`, :math:`\text{FP}` and :math:`\text{FN}` represent the number of true positives, false |
|
positives and false negatives respectively. If this case is encountered a score of `zero_division` |
|
(0 or 1, default is 0) is returned. |
|
|
|
As input to ``forward`` and ``update`` the metric accepts the following input: |
|
|
|
- ``preds`` (:class:`~torch.Tensor`): An int or float tensor of shape ``(N, ...)``. If preds is a floating point |
|
tensor with values outside [0,1] range we consider the input to be logits and will auto apply sigmoid per |
|
element. Additionally, we convert to int tensor with thresholding using the value in ``threshold``. |
|
- ``target`` (:class:`~torch.Tensor`): An int tensor of shape ``(N, ...)`` |
|
|
|
As output to ``forward`` and ``compute`` the metric returns the following output: |
|
|
|
- ``bf1s`` (:class:`~torch.Tensor`): A tensor whose returned shape depends on the ``multidim_average`` argument: |
|
|
|
- If ``multidim_average`` is set to ``global``, the metric returns a scalar value. |
|
- If ``multidim_average`` is set to ``samplewise``, the metric returns ``(N,)`` vector consisting of a scalar |
|
value per sample. |
|
|
|
If ``multidim_average`` is set to ``samplewise`` we expect at least one additional dimension ``...`` to be present, |
|
which the reduction will then be applied over instead of the sample dimension ``N``. |
|
|
|
Args: |
|
threshold: Threshold for transforming probability to binary {0,1} predictions |
|
multidim_average: |
|
Defines how additionally dimensions ``...`` should be handled. Should be one of the following: |
|
|
|
- ``global``: Additional dimensions are flatted along the batch dimension |
|
- ``samplewise``: Statistic will be calculated independently for each sample on the ``N`` axis. |
|
The statistics in this case are calculated over the additional dimensions. |
|
|
|
ignore_index: |
|
Specifies a target value that is ignored and does not contribute to the metric calculation |
|
validate_args: bool indicating if input arguments and tensors should be validated for correctness. |
|
Set to ``False`` for faster computations. |
|
zero_division: Should be `0` or `1`. The value returned when |
|
:math:`\text{TP} + \text{FP} = 0 \wedge \text{TP} + \text{FN} = 0`. |
|
|
|
Example (preds is int tensor): |
|
>>> from torch import tensor |
|
>>> from torchmetrics.classification import BinaryF1Score |
|
>>> target = tensor([0, 1, 0, 1, 0, 1]) |
|
>>> preds = tensor([0, 0, 1, 1, 0, 1]) |
|
>>> metric = BinaryF1Score() |
|
>>> metric(preds, target) |
|
tensor(0.6667) |
|
|
|
Example (preds is float tensor): |
|
>>> from torchmetrics.classification import BinaryF1Score |
|
>>> target = tensor([0, 1, 0, 1, 0, 1]) |
|
>>> preds = tensor([0.11, 0.22, 0.84, 0.73, 0.33, 0.92]) |
|
>>> metric = BinaryF1Score() |
|
>>> metric(preds, target) |
|
tensor(0.6667) |
|
|
|
Example (multidim tensors): |
|
>>> from torchmetrics.classification import BinaryF1Score |
|
>>> target = tensor([[[0, 1], [1, 0], [0, 1]], [[1, 1], [0, 0], [1, 0]]]) |
|
>>> preds = tensor([[[0.59, 0.91], [0.91, 0.99], [0.63, 0.04]], |
|
... [[0.38, 0.04], [0.86, 0.780], [0.45, 0.37]]]) |
|
>>> metric = BinaryF1Score(multidim_average='samplewise') |
|
>>> metric(preds, target) |
|
tensor([0.5000, 0.0000]) |
|
|
|
""" |
|
|
|
is_differentiable: bool = False |
|
higher_is_better: Optional[bool] = True |
|
full_state_update: bool = False |
|
plot_lower_bound: float = 0.0 |
|
plot_upper_bound: float = 1.0 |
|
|
|
def __init__( |
|
self, |
|
threshold: float = 0.5, |
|
multidim_average: Literal["global", "samplewise"] = "global", |
|
ignore_index: Optional[int] = None, |
|
validate_args: bool = True, |
|
zero_division: float = 0, |
|
**kwargs: Any, |
|
) -> None: |
|
super().__init__( |
|
beta=1.0, |
|
threshold=threshold, |
|
multidim_average=multidim_average, |
|
ignore_index=ignore_index, |
|
validate_args=validate_args, |
|
zero_division=zero_division, |
|
**kwargs, |
|
) |
|
|
|
def plot( |
|
self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None |
|
) -> _PLOT_OUT_TYPE: |
|
"""Plot a single or multiple values from the metric. |
|
|
|
Args: |
|
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results. |
|
If no value is provided, will automatically call `metric.compute` and plot that result. |
|
ax: An matplotlib axis object. If provided will add plot to that axis |
|
|
|
Returns: |
|
Figure object and Axes object |
|
|
|
Raises: |
|
ModuleNotFoundError: |
|
If `matplotlib` is not installed |
|
|
|
.. plot:: |
|
:scale: 75 |
|
|
|
>>> from torch import rand, randint |
|
>>> # Example plotting a single value |
|
>>> from torchmetrics.classification import BinaryF1Score |
|
>>> metric = BinaryF1Score() |
|
>>> metric.update(rand(10), randint(2,(10,))) |
|
>>> fig_, ax_ = metric.plot() |
|
|
|
.. plot:: |
|
:scale: 75 |
|
|
|
>>> from torch import rand, randint |
|
>>> # Example plotting multiple values |
|
>>> from torchmetrics.classification import BinaryF1Score |
|
>>> metric = BinaryF1Score() |
|
>>> values = [ ] |
|
>>> for _ in range(10): |
|
... values.append(metric(rand(10), randint(2,(10,)))) |
|
>>> fig_, ax_ = metric.plot(values) |
|
|
|
""" |
|
return self._plot(val, ax) |
|
|
|
|
|
class MulticlassF1Score(MulticlassFBetaScore): |
|
r"""Compute F-1 score for multiclass tasks. |
|
|
|
.. math:: |
|
F_{1} = 2\frac{\text{precision} * \text{recall}}{(\text{precision}) + \text{recall}} |
|
|
|
The metric is only proper defined when :math:`\text{TP} + \text{FP} \neq 0 \wedge \text{TP} + \text{FN} \neq 0` |
|
where :math:`\text{TP}`, :math:`\text{FP}` and :math:`\text{FN}` represent the number of true positives, false |
|
positives and false negatives respectively. If this case is encountered for any class, the metric for that class |
|
will be set to `zero_division` (0 or 1, default is 0) and the overall metric may therefore be affected in turn. |
|
|
|
As input to ``forward`` and ``update`` the metric accepts the following input: |
|
|
|
- ``preds`` (:class:`~torch.Tensor`): An int tensor of shape ``(N, ...)`` or float tensor of shape ``(N, C, ..)``. |
|
If preds is a floating point we apply ``torch.argmax`` along the ``C`` dimension to automatically convert |
|
probabilities/logits into an int tensor. |
|
- ``target`` (:class:`~torch.Tensor`): An int tensor of shape ``(N, ...)`` |
|
|
|
As output to ``forward`` and ``compute`` the metric returns the following output: |
|
|
|
- ``mcf1s`` (:class:`~torch.Tensor`): A tensor whose returned shape depends on the ``average`` and |
|
``multidim_average`` arguments: |
|
|
|
- If ``multidim_average`` is set to ``global``: |
|
|
|
- If ``average='micro'/'macro'/'weighted'``, the output will be a scalar tensor |
|
- If ``average=None/'none'``, the shape will be ``(C,)`` |
|
|
|
- If ``multidim_average`` is set to ``samplewise``: |
|
|
|
- If ``average='micro'/'macro'/'weighted'``, the shape will be ``(N,)`` |
|
- If ``average=None/'none'``, the shape will be ``(N, C)`` |
|
|
|
If ``multidim_average`` is set to ``samplewise`` we expect at least one additional dimension ``...`` to be present, |
|
which the reduction will then be applied over instead of the sample dimension ``N``. |
|
|
|
Args: |
|
preds: Tensor with predictions |
|
target: Tensor with true labels |
|
num_classes: Integer specifying the number of classes |
|
average: |
|
Defines the reduction that is applied over labels. Should be one of the following: |
|
|
|
- ``micro``: Sum statistics over all labels |
|
- ``macro``: Calculate statistics for each label and average them |
|
- ``weighted``: calculates statistics for each label and computes weighted average using their support |
|
- ``"none"`` or ``None``: calculates statistic for each label and applies no reduction |
|
top_k: |
|
Number of highest probability or logit score predictions considered to find the correct label. |
|
Only works when ``preds`` contain probabilities/logits. |
|
multidim_average: |
|
Defines how additionally dimensions ``...`` should be handled. Should be one of the following: |
|
|
|
- ``global``: Additional dimensions are flatted along the batch dimension |
|
- ``samplewise``: Statistic will be calculated independently for each sample on the ``N`` axis. |
|
The statistics in this case are calculated over the additional dimensions. |
|
|
|
ignore_index: |
|
Specifies a target value that is ignored and does not contribute to the metric calculation |
|
validate_args: bool indicating if input arguments and tensors should be validated for correctness. |
|
Set to ``False`` for faster computations. |
|
zero_division: Should be `0` or `1`. The value returned when |
|
:math:`\text{TP} + \text{FP} = 0 \wedge \text{TP} + \text{FN} = 0`. |
|
|
|
Example (preds is int tensor): |
|
>>> from torch import tensor |
|
>>> from torchmetrics.classification import MulticlassF1Score |
|
>>> target = tensor([2, 1, 0, 0]) |
|
>>> preds = tensor([2, 1, 0, 1]) |
|
>>> metric = MulticlassF1Score(num_classes=3) |
|
>>> metric(preds, target) |
|
tensor(0.7778) |
|
>>> mcf1s = MulticlassF1Score(num_classes=3, average=None) |
|
>>> mcf1s(preds, target) |
|
tensor([0.6667, 0.6667, 1.0000]) |
|
|
|
Example (preds is float tensor): |
|
>>> from torchmetrics.classification import MulticlassF1Score |
|
>>> target = tensor([2, 1, 0, 0]) |
|
>>> preds = tensor([[0.16, 0.26, 0.58], |
|
... [0.22, 0.61, 0.17], |
|
... [0.71, 0.09, 0.20], |
|
... [0.05, 0.82, 0.13]]) |
|
>>> metric = MulticlassF1Score(num_classes=3) |
|
>>> metric(preds, target) |
|
tensor(0.7778) |
|
>>> mcf1s = MulticlassF1Score(num_classes=3, average=None) |
|
>>> mcf1s(preds, target) |
|
tensor([0.6667, 0.6667, 1.0000]) |
|
|
|
Example (multidim tensors): |
|
>>> from torchmetrics.classification import MulticlassF1Score |
|
>>> target = tensor([[[0, 1], [2, 1], [0, 2]], [[1, 1], [2, 0], [1, 2]]]) |
|
>>> preds = tensor([[[0, 2], [2, 0], [0, 1]], [[2, 2], [2, 1], [1, 0]]]) |
|
>>> metric = MulticlassF1Score(num_classes=3, multidim_average='samplewise') |
|
>>> metric(preds, target) |
|
tensor([0.4333, 0.2667]) |
|
>>> mcf1s = MulticlassF1Score(num_classes=3, multidim_average='samplewise', average=None) |
|
>>> mcf1s(preds, target) |
|
tensor([[0.8000, 0.0000, 0.5000], |
|
[0.0000, 0.4000, 0.4000]]) |
|
|
|
""" |
|
|
|
is_differentiable: bool = False |
|
higher_is_better: Optional[bool] = True |
|
full_state_update: bool = False |
|
plot_lower_bound: float = 0.0 |
|
plot_upper_bound: float = 1.0 |
|
plot_legend_name: str = "Class" |
|
|
|
def __init__( |
|
self, |
|
num_classes: int, |
|
top_k: int = 1, |
|
average: Optional[Literal["micro", "macro", "weighted", "none"]] = "macro", |
|
multidim_average: Literal["global", "samplewise"] = "global", |
|
ignore_index: Optional[int] = None, |
|
validate_args: bool = True, |
|
zero_division: float = 0, |
|
**kwargs: Any, |
|
) -> None: |
|
super().__init__( |
|
beta=1.0, |
|
num_classes=num_classes, |
|
top_k=top_k, |
|
average=average, |
|
multidim_average=multidim_average, |
|
ignore_index=ignore_index, |
|
validate_args=validate_args, |
|
zero_division=zero_division, |
|
**kwargs, |
|
) |
|
|
|
def plot( |
|
self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None |
|
) -> _PLOT_OUT_TYPE: |
|
"""Plot a single or multiple values from the metric. |
|
|
|
Args: |
|
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results. |
|
If no value is provided, will automatically call `metric.compute` and plot that result. |
|
ax: An matplotlib axis object. If provided will add plot to that axis |
|
|
|
Returns: |
|
Figure object and Axes object |
|
|
|
Raises: |
|
ModuleNotFoundError: |
|
If `matplotlib` is not installed |
|
|
|
.. plot:: |
|
:scale: 75 |
|
|
|
>>> from torch import randint |
|
>>> # Example plotting a single value per class |
|
>>> from torchmetrics.classification import MulticlassF1Score |
|
>>> metric = MulticlassF1Score(num_classes=3, average=None) |
|
>>> metric.update(randint(3, (20,)), randint(3, (20,))) |
|
>>> fig_, ax_ = metric.plot() |
|
|
|
.. plot:: |
|
:scale: 75 |
|
|
|
>>> from torch import randint |
|
>>> # Example plotting a multiple values per class |
|
>>> from torchmetrics.classification import MulticlassF1Score |
|
>>> metric = MulticlassF1Score(num_classes=3, average=None) |
|
>>> values = [] |
|
>>> for _ in range(20): |
|
... values.append(metric(randint(3, (20,)), randint(3, (20,)))) |
|
>>> fig_, ax_ = metric.plot(values) |
|
|
|
""" |
|
return self._plot(val, ax) |
|
|
|
|
|
class MultilabelF1Score(MultilabelFBetaScore): |
|
r"""Compute F-1 score for multilabel tasks. |
|
|
|
.. math:: |
|
F_{1} = 2\frac{\text{precision} * \text{recall}}{(\text{precision}) + \text{recall}} |
|
|
|
The metric is only proper defined when :math:`\text{TP} + \text{FP} \neq 0 \wedge \text{TP} + \text{FN} \neq 0` |
|
where :math:`\text{TP}`, :math:`\text{FP}` and :math:`\text{FN}` represent the number of true positives, false |
|
positives and false negatives respectively. If this case is encountered for any label, the metric for that label |
|
will be set to `zero_division` (0 or 1, default is 0) and the overall metric may therefore be affected in turn. |
|
|
|
As input to ``forward`` and ``update`` the metric accepts the following input: |
|
|
|
- ``preds`` (:class:`~torch.Tensor`): An int or float tensor of shape ``(N, C, ...)``. |
|
If preds is a floating point tensor with values outside [0,1] range we consider the input to be logits and |
|
will auto apply sigmoid per element. Additionally, we convert to int tensor with thresholding using the value |
|
in ``threshold``. |
|
- ``target`` (:class:`~torch.Tensor`): An int tensor of shape ``(N, C, ...)``. |
|
|
|
As output to ``forward`` and ``compute`` the metric returns the following output: |
|
|
|
- ``mlf1s`` (:class:`~torch.Tensor`): A tensor whose returned shape depends on the ``average`` and |
|
``multidim_average`` arguments: |
|
|
|
- If ``multidim_average`` is set to ``global``: |
|
|
|
- If ``average='micro'/'macro'/'weighted'``, the output will be a scalar tensor |
|
- If ``average=None/'none'``, the shape will be ``(C,)`` |
|
|
|
- If ``multidim_average`` is set to ``samplewise``: |
|
|
|
- If ``average='micro'/'macro'/'weighted'``, the shape will be ``(N,)`` |
|
- If ``average=None/'none'``, the shape will be ``(N, C)``` |
|
|
|
If ``multidim_average`` is set to ``samplewise`` we expect at least one additional dimension ``...`` to be present, |
|
which the reduction will then be applied over instead of the sample dimension ``N``. |
|
|
|
Args: |
|
num_labels: Integer specifying the number of labels |
|
threshold: Threshold for transforming probability to binary (0,1) predictions |
|
average: |
|
Defines the reduction that is applied over labels. Should be one of the following: |
|
|
|
- ``micro``: Sum statistics over all labels |
|
- ``macro``: Calculate statistics for each label and average them |
|
- ``weighted``: calculates statistics for each label and computes weighted average using their support |
|
- ``"none"`` or ``None``: calculates statistic for each label and applies no reduction |
|
|
|
multidim_average: |
|
Defines how additionally dimensions ``...`` should be handled. Should be one of the following: |
|
|
|
- ``global``: Additional dimensions are flatted along the batch dimension |
|
- ``samplewise``: Statistic will be calculated independently for each sample on the ``N`` axis. |
|
The statistics in this case are calculated over the additional dimensions. |
|
|
|
ignore_index: |
|
Specifies a target value that is ignored and does not contribute to the metric calculation |
|
validate_args: bool indicating if input arguments and tensors should be validated for correctness. |
|
Set to ``False`` for faster computations. |
|
zero_division: Should be `0` or `1`. The value returned when |
|
:math:`\text{TP} + \text{FP} = 0 \wedge \text{TP} + \text{FN} = 0`. |
|
|
|
Example (preds is int tensor): |
|
>>> from torch import tensor |
|
>>> from torchmetrics.classification import MultilabelF1Score |
|
>>> target = tensor([[0, 1, 0], [1, 0, 1]]) |
|
>>> preds = tensor([[0, 0, 1], [1, 0, 1]]) |
|
>>> metric = MultilabelF1Score(num_labels=3) |
|
>>> metric(preds, target) |
|
tensor(0.5556) |
|
>>> mlf1s = MultilabelF1Score(num_labels=3, average=None) |
|
>>> mlf1s(preds, target) |
|
tensor([1.0000, 0.0000, 0.6667]) |
|
|
|
Example (preds is float tensor): |
|
>>> from torchmetrics.classification import MultilabelF1Score |
|
>>> target = tensor([[0, 1, 0], [1, 0, 1]]) |
|
>>> preds = tensor([[0.11, 0.22, 0.84], [0.73, 0.33, 0.92]]) |
|
>>> metric = MultilabelF1Score(num_labels=3) |
|
>>> metric(preds, target) |
|
tensor(0.5556) |
|
>>> mlf1s = MultilabelF1Score(num_labels=3, average=None) |
|
>>> mlf1s(preds, target) |
|
tensor([1.0000, 0.0000, 0.6667]) |
|
|
|
Example (multidim tensors): |
|
>>> from torchmetrics.classification import MultilabelF1Score |
|
>>> target = tensor([[[0, 1], [1, 0], [0, 1]], [[1, 1], [0, 0], [1, 0]]]) |
|
>>> preds = tensor([[[0.59, 0.91], [0.91, 0.99], [0.63, 0.04]], |
|
... [[0.38, 0.04], [0.86, 0.780], [0.45, 0.37]]]) |
|
>>> metric = MultilabelF1Score(num_labels=3, multidim_average='samplewise') |
|
>>> metric(preds, target) |
|
tensor([0.4444, 0.0000]) |
|
>>> mlf1s = MultilabelF1Score(num_labels=3, multidim_average='samplewise', average=None) |
|
>>> mlf1s(preds, target) |
|
tensor([[0.6667, 0.6667, 0.0000], |
|
[0.0000, 0.0000, 0.0000]]) |
|
|
|
""" |
|
|
|
is_differentiable: bool = False |
|
higher_is_better: Optional[bool] = True |
|
full_state_update: bool = False |
|
plot_lower_bound: float = 0.0 |
|
plot_upper_bound: float = 1.0 |
|
plot_legend_name: str = "Label" |
|
|
|
def __init__( |
|
self, |
|
num_labels: int, |
|
threshold: float = 0.5, |
|
average: Optional[Literal["micro", "macro", "weighted", "none"]] = "macro", |
|
multidim_average: Literal["global", "samplewise"] = "global", |
|
ignore_index: Optional[int] = None, |
|
validate_args: bool = True, |
|
zero_division: float = 0, |
|
**kwargs: Any, |
|
) -> None: |
|
super().__init__( |
|
beta=1.0, |
|
num_labels=num_labels, |
|
threshold=threshold, |
|
average=average, |
|
multidim_average=multidim_average, |
|
ignore_index=ignore_index, |
|
validate_args=validate_args, |
|
zero_division=zero_division, |
|
**kwargs, |
|
) |
|
|
|
def plot( |
|
self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None |
|
) -> _PLOT_OUT_TYPE: |
|
"""Plot a single or multiple values from the metric. |
|
|
|
Args: |
|
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results. |
|
If no value is provided, will automatically call `metric.compute` and plot that result. |
|
ax: An matplotlib axis object. If provided will add plot to that axis |
|
|
|
Returns: |
|
Figure and Axes object |
|
|
|
Raises: |
|
ModuleNotFoundError: |
|
If `matplotlib` is not installed |
|
|
|
.. plot:: |
|
:scale: 75 |
|
|
|
>>> from torch import rand, randint |
|
>>> # Example plotting a single value |
|
>>> from torchmetrics.classification import MultilabelF1Score |
|
>>> metric = MultilabelF1Score(num_labels=3) |
|
>>> metric.update(randint(2, (20, 3)), randint(2, (20, 3))) |
|
>>> fig_, ax_ = metric.plot() |
|
|
|
.. plot:: |
|
:scale: 75 |
|
|
|
>>> from torch import rand, randint |
|
>>> # Example plotting multiple values |
|
>>> from torchmetrics.classification import MultilabelF1Score |
|
>>> metric = MultilabelF1Score(num_labels=3) |
|
>>> values = [ ] |
|
>>> for _ in range(10): |
|
... values.append(metric(randint(2, (20, 3)), randint(2, (20, 3)))) |
|
>>> fig_, ax_ = metric.plot(values) |
|
|
|
""" |
|
return self._plot(val, ax) |
|
|
|
|
|
class FBetaScore(_ClassificationTaskWrapper): |
|
r"""Compute `F-score`_ metric. |
|
|
|
.. math:: |
|
F_{\beta} = (1 + \beta^2) * \frac{\text{precision} * \text{recall}} |
|
{(\beta^2 * \text{precision}) + \text{recall}} |
|
|
|
The metric is only proper defined when :math:`\text{TP} + \text{FP} \neq 0 \wedge \text{TP} + \text{FN} \neq 0` |
|
where :math:`\text{TP}`, :math:`\text{FP}` and :math:`\text{FN}` represent the number of true positives, false |
|
positives and false negatives respectively. If this case is encountered for any class/label, the metric for that |
|
class/label will be set to `zero_division` (0 or 1, default is 0) and the overall metric may therefore be |
|
affected in turn. |
|
|
|
This function is a simple wrapper to get the task specific versions of this metric, which is done by setting the |
|
``task`` argument to either ``'binary'``, ``'multiclass'`` or ``multilabel``. See the documentation of |
|
:class:`~torchmetrics.classification.BinaryFBetaScore`, |
|
:class:`~torchmetrics.classification.MulticlassFBetaScore` and |
|
:class:`~torchmetrics.classification.MultilabelFBetaScore` for the specific details of each argument influence |
|
and examples. |
|
|
|
Legcy Example: |
|
>>> from torch import tensor |
|
>>> target = tensor([0, 1, 2, 0, 1, 2]) |
|
>>> preds = tensor([0, 2, 1, 0, 0, 1]) |
|
>>> f_beta = FBetaScore(task="multiclass", num_classes=3, beta=0.5) |
|
>>> f_beta(preds, target) |
|
tensor(0.3333) |
|
|
|
""" |
|
|
|
def __new__( |
|
cls: type["FBetaScore"], |
|
task: Literal["binary", "multiclass", "multilabel"], |
|
beta: float = 1.0, |
|
threshold: float = 0.5, |
|
num_classes: Optional[int] = None, |
|
num_labels: Optional[int] = None, |
|
average: Optional[Literal["micro", "macro", "weighted", "none"]] = "micro", |
|
multidim_average: Optional[Literal["global", "samplewise"]] = "global", |
|
top_k: Optional[int] = 1, |
|
ignore_index: Optional[int] = None, |
|
validate_args: bool = True, |
|
zero_division: float = 0, |
|
**kwargs: Any, |
|
) -> Metric: |
|
"""Initialize task metric.""" |
|
task = ClassificationTask.from_str(task) |
|
assert multidim_average is not None |
|
kwargs.update({ |
|
"multidim_average": multidim_average, |
|
"ignore_index": ignore_index, |
|
"validate_args": validate_args, |
|
"zero_division": zero_division, |
|
}) |
|
if task == ClassificationTask.BINARY: |
|
return BinaryFBetaScore(beta, threshold, **kwargs) |
|
if task == ClassificationTask.MULTICLASS: |
|
if not isinstance(num_classes, int): |
|
raise ValueError(f"`num_classes` is expected to be `int` but `{type(num_classes)} was passed.`") |
|
if not isinstance(top_k, int): |
|
raise ValueError(f"`top_k` is expected to be `int` but `{type(top_k)} was passed.`") |
|
return MulticlassFBetaScore(beta, num_classes, top_k, average, **kwargs) |
|
if task == ClassificationTask.MULTILABEL: |
|
if not isinstance(num_labels, int): |
|
raise ValueError(f"`num_labels` is expected to be `int` but `{type(num_labels)} was passed.`") |
|
return MultilabelFBetaScore(beta, num_labels, threshold, average, **kwargs) |
|
raise ValueError(f"Task {task} not supported!") |
|
|
|
|
|
class F1Score(_ClassificationTaskWrapper): |
|
r"""Compute F-1 score. |
|
|
|
.. math:: |
|
F_{1} = 2\frac{\text{precision} * \text{recall}}{(\text{precision}) + \text{recall}} |
|
|
|
The metric is only proper defined when :math:`\text{TP} + \text{FP} \neq 0 \wedge \text{TP} + \text{FN} \neq 0` |
|
where :math:`\text{TP}`, :math:`\text{FP}` and :math:`\text{FN}` represent the number of true positives, false |
|
positives and false negatives respectively. If this case is encountered for any class/label, the metric for that |
|
class/label will be set to `zero_division` (0 or 1, default is 0) and the overall metric may therefore be |
|
affected in turn. |
|
|
|
This function is a simple wrapper to get the task specific versions of this metric, which is done by setting the |
|
``task`` argument to either ``'binary'``, ``'multiclass'`` or ``multilabel``. See the documentation of |
|
:class:`~torchmetrics.classification.BinaryF1Score`, :class:`~torchmetrics.classification.MulticlassF1Score` and |
|
:class:`~torchmetrics.classification.MultilabelF1Score` for the specific details of each argument influence and |
|
examples. |
|
|
|
Legacy Example: |
|
>>> from torch import tensor |
|
>>> target = tensor([0, 1, 2, 0, 1, 2]) |
|
>>> preds = tensor([0, 2, 1, 0, 0, 1]) |
|
>>> f1 = F1Score(task="multiclass", num_classes=3) |
|
>>> f1(preds, target) |
|
tensor(0.3333) |
|
|
|
""" |
|
|
|
def __new__( |
|
cls: type["F1Score"], |
|
task: Literal["binary", "multiclass", "multilabel"], |
|
threshold: float = 0.5, |
|
num_classes: Optional[int] = None, |
|
num_labels: Optional[int] = None, |
|
average: Optional[Literal["micro", "macro", "weighted", "none"]] = "micro", |
|
multidim_average: Optional[Literal["global", "samplewise"]] = "global", |
|
top_k: Optional[int] = 1, |
|
ignore_index: Optional[int] = None, |
|
validate_args: bool = True, |
|
zero_division: float = 0, |
|
**kwargs: Any, |
|
) -> Metric: |
|
"""Initialize task metric.""" |
|
task = ClassificationTask.from_str(task) |
|
assert multidim_average is not None |
|
kwargs.update({ |
|
"multidim_average": multidim_average, |
|
"ignore_index": ignore_index, |
|
"validate_args": validate_args, |
|
"zero_division": zero_division, |
|
}) |
|
if task == ClassificationTask.BINARY: |
|
return BinaryF1Score(threshold, **kwargs) |
|
if task == ClassificationTask.MULTICLASS: |
|
if not isinstance(num_classes, int): |
|
raise ValueError(f"`num_classes` is expected to be `int` but `{type(num_classes)} was passed.`") |
|
if not isinstance(top_k, int): |
|
raise ValueError(f"`top_k` is expected to be `int` but `{type(top_k)} was passed.`") |
|
return MulticlassF1Score(num_classes, top_k, average, **kwargs) |
|
if task == ClassificationTask.MULTILABEL: |
|
if not isinstance(num_labels, int): |
|
raise ValueError(f"`num_labels` is expected to be `int` but `{type(num_labels)} was passed.`") |
|
return MultilabelF1Score(num_labels, threshold, average, **kwargs) |
|
raise ValueError(f"Task {task} not supported!") |
|
|