jamtur01's picture
Upload folder using huggingface_hub
9c6594c verified
# Copyright The Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections.abc import Sequence
from typing import Any, Optional, Union
from torch import Tensor
from typing_extensions import Literal
from torchmetrics.classification.base import _ClassificationTaskWrapper
from torchmetrics.classification.stat_scores import BinaryStatScores, MulticlassStatScores, MultilabelStatScores
from torchmetrics.functional.classification.f_beta import (
_binary_fbeta_score_arg_validation,
_fbeta_reduce,
_multiclass_fbeta_score_arg_validation,
_multilabel_fbeta_score_arg_validation,
)
from torchmetrics.metric import Metric
from torchmetrics.utilities.enums import ClassificationTask
from torchmetrics.utilities.imports import _MATPLOTLIB_AVAILABLE
from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE
if not _MATPLOTLIB_AVAILABLE:
__doctest_skip__ = [
"BinaryFBetaScore.plot",
"MulticlassFBetaScore.plot",
"MultilabelFBetaScore.plot",
"BinaryF1Score.plot",
"MulticlassF1Score.plot",
"MultilabelF1Score.plot",
]
class BinaryFBetaScore(BinaryStatScores):
r"""Compute `F-score`_ metric for binary tasks.
.. math::
F_{\beta} = (1 + \beta^2) * \frac{\text{precision} * \text{recall}}
{(\beta^2 * \text{precision}) + \text{recall}}
The metric is only proper defined when :math:`\text{TP} + \text{FP} \neq 0 \wedge \text{TP} + \text{FN} \neq 0`
where :math:`\text{TP}`, :math:`\text{FP}` and :math:`\text{FN}` represent the number of true positives, false
positives and false negatives respectively. If this case is encountered a score of `zero_division`
(0 or 1, default is 0) is returned.
As input to ``forward`` and ``update`` the metric accepts the following input:
- ``preds`` (:class:`~torch.Tensor`): An int tensor or float tensor of shape ``(N, ...)``. If preds is a floating
point tensor with values outside [0,1] range we consider the input to be logits and will auto apply sigmoid
per element. Additionally, we convert to int tensor with thresholding using the value in ``threshold``.
- ``target`` (:class:`~torch.Tensor`): An int tensor of shape ``(N, ...)``.
As output to ``forward`` and ``compute`` the metric returns the following output:
- ``bfbs`` (:class:`~torch.Tensor`): A tensor whose returned shape depends on the ``multidim_average`` argument:
- If ``multidim_average`` is set to ``global`` the output will be a scalar tensor
- If ``multidim_average`` is set to ``samplewise`` the output will be a tensor of shape ``(N,)`` consisting of
a scalar value per sample.
If ``multidim_average`` is set to ``samplewise`` we expect at least one additional dimension ``...`` to be present,
which the reduction will then be applied over instead of the sample dimension ``N``.
Args:
beta: Weighting between precision and recall in calculation. Setting to 1 corresponds to equal weight
threshold: Threshold for transforming probability to binary {0,1} predictions
multidim_average:
Defines how additionally dimensions ``...`` should be handled. Should be one of the following:
- ``global``: Additional dimensions are flatted along the batch dimension
- ``samplewise``: Statistic will be calculated independently for each sample on the ``N`` axis.
The statistics in this case are calculated over the additional dimensions.
ignore_index:
Specifies a target value that is ignored and does not contribute to the metric calculation
validate_args: bool indicating if input arguments and tensors should be validated for correctness.
Set to ``False`` for faster computations.
zero_division: Should be `0` or `1`. The value returned when
:math:`\text{TP} + \text{FP} = 0 \wedge \text{TP} + \text{FN} = 0`.
Example (preds is int tensor):
>>> from torch import tensor
>>> from torchmetrics.classification import BinaryFBetaScore
>>> target = tensor([0, 1, 0, 1, 0, 1])
>>> preds = tensor([0, 0, 1, 1, 0, 1])
>>> metric = BinaryFBetaScore(beta=2.0)
>>> metric(preds, target)
tensor(0.6667)
Example (preds is float tensor):
>>> from torchmetrics.classification import BinaryFBetaScore
>>> target = tensor([0, 1, 0, 1, 0, 1])
>>> preds = tensor([0.11, 0.22, 0.84, 0.73, 0.33, 0.92])
>>> metric = BinaryFBetaScore(beta=2.0)
>>> metric(preds, target)
tensor(0.6667)
Example (multidim tensors):
>>> from torchmetrics.classification import BinaryFBetaScore
>>> target = tensor([[[0, 1], [1, 0], [0, 1]], [[1, 1], [0, 0], [1, 0]]])
>>> preds = tensor([[[0.59, 0.91], [0.91, 0.99], [0.63, 0.04]],
... [[0.38, 0.04], [0.86, 0.780], [0.45, 0.37]]])
>>> metric = BinaryFBetaScore(beta=2.0, multidim_average='samplewise')
>>> metric(preds, target)
tensor([0.5882, 0.0000])
"""
is_differentiable: bool = False
higher_is_better: Optional[bool] = True
full_state_update: bool = False
plot_lower_bound: float = 0.0
plot_upper_bound: float = 1.0
def __init__(
self,
beta: float,
threshold: float = 0.5,
multidim_average: Literal["global", "samplewise"] = "global",
ignore_index: Optional[int] = None,
validate_args: bool = True,
zero_division: float = 0,
**kwargs: Any,
) -> None:
super().__init__(
threshold=threshold,
multidim_average=multidim_average,
ignore_index=ignore_index,
validate_args=False,
**kwargs,
)
if validate_args:
_binary_fbeta_score_arg_validation(beta, threshold, multidim_average, ignore_index, zero_division)
self.validate_args = validate_args
self.zero_division = zero_division
self.beta = beta
def compute(self) -> Tensor:
"""Compute metric."""
tp, fp, tn, fn = self._final_state()
return _fbeta_reduce(
tp,
fp,
tn,
fn,
self.beta,
average="binary",
multidim_average=self.multidim_average,
zero_division=self.zero_division,
)
def plot(
self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None
) -> _PLOT_OUT_TYPE:
"""Plot a single or multiple values from the metric.
Args:
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results.
If no value is provided, will automatically call `metric.compute` and plot that result.
ax: An matplotlib axis object. If provided will add plot to that axis
Returns:
Figure object and Axes object
Raises:
ModuleNotFoundError:
If `matplotlib` is not installed
.. plot::
:scale: 75
>>> from torch import rand, randint
>>> # Example plotting a single value
>>> from torchmetrics.classification import BinaryFBetaScore
>>> metric = BinaryFBetaScore(beta=2.0)
>>> metric.update(rand(10), randint(2,(10,)))
>>> fig_, ax_ = metric.plot()
.. plot::
:scale: 75
>>> from torch import rand, randint
>>> # Example plotting multiple values
>>> from torchmetrics.classification import BinaryFBetaScore
>>> metric = BinaryFBetaScore(beta=2.0)
>>> values = [ ]
>>> for _ in range(10):
... values.append(metric(rand(10), randint(2,(10,))))
>>> fig_, ax_ = metric.plot(values)
"""
return self._plot(val, ax)
class MulticlassFBetaScore(MulticlassStatScores):
r"""Compute `F-score`_ metric for multiclass tasks.
.. math::
F_{\beta} = (1 + \beta^2) * \frac{\text{precision} * \text{recall}}
{(\beta^2 * \text{precision}) + \text{recall}}
The metric is only proper defined when :math:`\text{TP} + \text{FP} \neq 0 \wedge \text{TP} + \text{FN} \neq 0`
where :math:`\text{TP}`, :math:`\text{FP}` and :math:`\text{FN}` represent the number of true positives, false
positives and false negatives respectively. If this case is encountered for any class, the metric for that class
will be set to `zero_division` (0 or 1, default is 0) and the overall metric may therefore be affected in turn.
As input to ``forward`` and ``update`` the metric accepts the following input:
- ``preds`` (:class:`~torch.Tensor`): An int tensor of shape ``(N, ...)`` or float tensor of shape ``(N, C, ..)``.
If preds is a floating point we apply ``torch.argmax`` along the ``C`` dimension to automatically convert
probabilities/logits into an int tensor.
- ``target`` (:class:`~torch.Tensor`): An int tensor of shape ``(N, ...)``.
As output to ``forward`` and ``compute`` the metric returns the following output:
- ``mcfbs`` (:class:`~torch.Tensor`): A tensor whose returned shape depends on the ``average`` and
``multidim_average`` arguments:
- If ``multidim_average`` is set to ``global``:
- If ``average='micro'/'macro'/'weighted'``, the output will be a scalar tensor
- If ``average=None/'none'``, the shape will be ``(C,)``
- If ``multidim_average`` is set to ``samplewise``:
- If ``average='micro'/'macro'/'weighted'``, the shape will be ``(N,)``
- If ``average=None/'none'``, the shape will be ``(N, C)``
If ``multidim_average`` is set to ``samplewise`` we expect at least one additional dimension ``...`` to be present,
which the reduction will then be applied over instead of the sample dimension ``N``.
Args:
beta: Weighting between precision and recall in calculation. Setting to 1 corresponds to equal weight
num_classes: Integer specifying the number of classes
average:
Defines the reduction that is applied over labels. Should be one of the following:
- ``micro``: Sum statistics over all labels
- ``macro``: Calculate statistics for each label and average them
- ``weighted``: calculates statistics for each label and computes weighted average using their support
- ``"none"`` or ``None``: calculates statistic for each label and applies no reduction
top_k:
Number of highest probability or logit score predictions considered to find the correct label.
Only works when ``preds`` contain probabilities/logits.
multidim_average:
Defines how additionally dimensions ``...`` should be handled. Should be one of the following:
- ``global``: Additional dimensions are flatted along the batch dimension
- ``samplewise``: Statistic will be calculated independently for each sample on the ``N`` axis.
The statistics in this case are calculated over the additional dimensions.
ignore_index:
Specifies a target value that is ignored and does not contribute to the metric calculation
validate_args: bool indicating if input arguments and tensors should be validated for correctness.
Set to ``False`` for faster computations.
zero_division: Should be `0` or `1`. The value returned when
:math:`\text{TP} + \text{FP} = 0 \wedge \text{TP} + \text{FN} = 0`.
Example (preds is int tensor):
>>> from torch import tensor
>>> from torchmetrics.classification import MulticlassFBetaScore
>>> target = tensor([2, 1, 0, 0])
>>> preds = tensor([2, 1, 0, 1])
>>> metric = MulticlassFBetaScore(beta=2.0, num_classes=3)
>>> metric(preds, target)
tensor(0.7963)
>>> mcfbs = MulticlassFBetaScore(beta=2.0, num_classes=3, average=None)
>>> mcfbs(preds, target)
tensor([0.5556, 0.8333, 1.0000])
Example (preds is float tensor):
>>> from torchmetrics.classification import MulticlassFBetaScore
>>> target = tensor([2, 1, 0, 0])
>>> preds = tensor([[0.16, 0.26, 0.58],
... [0.22, 0.61, 0.17],
... [0.71, 0.09, 0.20],
... [0.05, 0.82, 0.13]])
>>> metric = MulticlassFBetaScore(beta=2.0, num_classes=3)
>>> metric(preds, target)
tensor(0.7963)
>>> mcfbs = MulticlassFBetaScore(beta=2.0, num_classes=3, average=None)
>>> mcfbs(preds, target)
tensor([0.5556, 0.8333, 1.0000])
Example (multidim tensors):
>>> from torchmetrics.classification import MulticlassFBetaScore
>>> target = tensor([[[0, 1], [2, 1], [0, 2]], [[1, 1], [2, 0], [1, 2]]])
>>> preds = tensor([[[0, 2], [2, 0], [0, 1]], [[2, 2], [2, 1], [1, 0]]])
>>> metric = MulticlassFBetaScore(beta=2.0, num_classes=3, multidim_average='samplewise')
>>> metric(preds, target)
tensor([0.4697, 0.2706])
>>> mcfbs = MulticlassFBetaScore(beta=2.0, num_classes=3, multidim_average='samplewise', average=None)
>>> mcfbs(preds, target)
tensor([[0.9091, 0.0000, 0.5000],
[0.0000, 0.3571, 0.4545]])
"""
is_differentiable: bool = False
higher_is_better: Optional[bool] = True
full_state_update: bool = False
plot_lower_bound: float = 0.0
plot_upper_bound: float = 1.0
plot_legend_name: str = "Class"
def __init__(
self,
beta: float,
num_classes: int,
top_k: int = 1,
average: Optional[Literal["micro", "macro", "weighted", "none"]] = "macro",
multidim_average: Literal["global", "samplewise"] = "global",
ignore_index: Optional[int] = None,
validate_args: bool = True,
zero_division: float = 0,
**kwargs: Any,
) -> None:
super().__init__(
num_classes=num_classes,
top_k=top_k,
average=average,
multidim_average=multidim_average,
ignore_index=ignore_index,
validate_args=False,
**kwargs,
)
if validate_args:
_multiclass_fbeta_score_arg_validation(
beta, num_classes, top_k, average, multidim_average, ignore_index, zero_division
)
self.validate_args = validate_args
self.zero_division = zero_division
self.beta = beta
def compute(self) -> Tensor:
"""Compute metric."""
tp, fp, tn, fn = self._final_state()
return _fbeta_reduce(
tp,
fp,
tn,
fn,
self.beta,
average=self.average,
multidim_average=self.multidim_average,
zero_division=self.zero_division,
)
def plot(
self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None
) -> _PLOT_OUT_TYPE:
"""Plot a single or multiple values from the metric.
Args:
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results.
If no value is provided, will automatically call `metric.compute` and plot that result.
ax: An matplotlib axis object. If provided will add plot to that axis
Returns:
Figure object and Axes object
Raises:
ModuleNotFoundError:
If `matplotlib` is not installed
.. plot::
:scale: 75
>>> from torch import randint
>>> # Example plotting a single value per class
>>> from torchmetrics.classification import MulticlassFBetaScore
>>> metric = MulticlassFBetaScore(num_classes=3, beta=2.0, average=None)
>>> metric.update(randint(3, (20,)), randint(3, (20,)))
>>> fig_, ax_ = metric.plot()
.. plot::
:scale: 75
>>> from torch import randint
>>> # Example plotting a multiple values per class
>>> from torchmetrics.classification import MulticlassFBetaScore
>>> metric = MulticlassFBetaScore(num_classes=3, beta=2.0, average=None)
>>> values = []
>>> for _ in range(20):
... values.append(metric(randint(3, (20,)), randint(3, (20,))))
>>> fig_, ax_ = metric.plot(values)
"""
return self._plot(val, ax)
class MultilabelFBetaScore(MultilabelStatScores):
r"""Compute `F-score`_ metric for multilabel tasks.
.. math::
F_{\beta} = (1 + \beta^2) * \frac{\text{precision} * \text{recall}}
{(\beta^2 * \text{precision}) + \text{recall}}
The metric is only proper defined when :math:`\text{TP} + \text{FP} \neq 0 \wedge \text{TP} + \text{FN} \neq 0`
where :math:`\text{TP}`, :math:`\text{FP}` and :math:`\text{FN}` represent the number of true positives, false
positives and false negatives respectively. If this case is encountered for any label, the metric for that label
will be set to `zero_division` (0 or 1, default is 0) and the overall metric may therefore be affected in turn.
As input to ``forward`` and ``update`` the metric accepts the following input:
- ``preds`` (:class:`~torch.Tensor`): An int or float tensor of shape ``(N, C, ...)``. If preds is a floating
point tensor with values outside [0,1] range we consider the input to be logits and will auto apply sigmoid
per element. Additionally, we convert to int tensor with thresholding using the value in ``threshold``.
- ``target`` (:class:`~torch.Tensor`): An int tensor of shape ``(N, C, ...)``.
As output to ``forward`` and ``compute`` the metric returns the following output:
- ``mlfbs`` (:class:`~torch.Tensor`): A tensor whose returned shape depends on the ``average`` and
``multidim_average`` arguments:
- If ``multidim_average`` is set to ``global``:
- If ``average='micro'/'macro'/'weighted'``, the output will be a scalar tensor
- If ``average=None/'none'``, the shape will be ``(C,)``
- If ``multidim_average`` is set to ``samplewise``:
- If ``average='micro'/'macro'/'weighted'``, the shape will be ``(N,)``
- If ``average=None/'none'``, the shape will be ``(N, C)``
If ``multidim_average`` is set to ``samplewise`` we expect at least one additional dimension ``...`` to be present,
which the reduction will then be applied over instead of the sample dimension ``N``.
Args:
beta: Weighting between precision and recall in calculation. Setting to 1 corresponds to equal weight
num_labels: Integer specifying the number of labels
threshold: Threshold for transforming probability to binary (0,1) predictions
average:
Defines the reduction that is applied over labels. Should be one of the following:
- ``micro``: Sum statistics over all labels
- ``macro``: Calculate statistics for each label and average them
- ``weighted``: calculates statistics for each label and computes weighted average using their support
- ``"none"`` or ``None``: calculates statistic for each label and applies no reduction
multidim_average:
Defines how additionally dimensions ``...`` should be handled. Should be one of the following:
- ``global``: Additional dimensions are flatted along the batch dimension
- ``samplewise``: Statistic will be calculated independently for each sample on the ``N`` axis.
The statistics in this case are calculated over the additional dimensions.
ignore_index:
Specifies a target value that is ignored and does not contribute to the metric calculation
validate_args: bool indicating if input arguments and tensors should be validated for correctness.
Set to ``False`` for faster computations.
zero_division: Should be `0` or `1`. The value returned when
:math:`\text{TP} + \text{FP} = 0 \wedge \text{TP} + \text{FN} = 0`.
Example (preds is int tensor):
>>> from torch import tensor
>>> from torchmetrics.classification import MultilabelFBetaScore
>>> target = tensor([[0, 1, 0], [1, 0, 1]])
>>> preds = tensor([[0, 0, 1], [1, 0, 1]])
>>> metric = MultilabelFBetaScore(beta=2.0, num_labels=3)
>>> metric(preds, target)
tensor(0.6111)
>>> mlfbs = MultilabelFBetaScore(beta=2.0, num_labels=3, average=None)
>>> mlfbs(preds, target)
tensor([1.0000, 0.0000, 0.8333])
Example (preds is float tensor):
>>> from torchmetrics.classification import MultilabelFBetaScore
>>> target = tensor([[0, 1, 0], [1, 0, 1]])
>>> preds = tensor([[0.11, 0.22, 0.84], [0.73, 0.33, 0.92]])
>>> metric = MultilabelFBetaScore(beta=2.0, num_labels=3)
>>> metric(preds, target)
tensor(0.6111)
>>> mlfbs = MultilabelFBetaScore(beta=2.0, num_labels=3, average=None)
>>> mlfbs(preds, target)
tensor([1.0000, 0.0000, 0.8333])
Example (multidim tensors):
>>> from torchmetrics.classification import MultilabelFBetaScore
>>> target = tensor([[[0, 1], [1, 0], [0, 1]], [[1, 1], [0, 0], [1, 0]]])
>>> preds = tensor([[[0.59, 0.91], [0.91, 0.99], [0.63, 0.04]],
... [[0.38, 0.04], [0.86, 0.780], [0.45, 0.37]]])
>>> metric = MultilabelFBetaScore(num_labels=3, beta=2.0, multidim_average='samplewise')
>>> metric(preds, target)
tensor([0.5556, 0.0000])
>>> mlfbs = MultilabelFBetaScore(num_labels=3, beta=2.0, multidim_average='samplewise', average=None)
>>> mlfbs(preds, target)
tensor([[0.8333, 0.8333, 0.0000],
[0.0000, 0.0000, 0.0000]])
"""
is_differentiable: bool = False
higher_is_better: Optional[bool] = True
full_state_update: bool = False
plot_lower_bound: float = 0.0
plot_upper_bound: float = 1.0
plot_legend_name: str = "Label"
def __init__(
self,
beta: float,
num_labels: int,
threshold: float = 0.5,
average: Optional[Literal["micro", "macro", "weighted", "none"]] = "macro",
multidim_average: Literal["global", "samplewise"] = "global",
ignore_index: Optional[int] = None,
validate_args: bool = True,
zero_division: float = 0,
**kwargs: Any,
) -> None:
super().__init__(
num_labels=num_labels,
threshold=threshold,
average=average,
multidim_average=multidim_average,
ignore_index=ignore_index,
validate_args=False,
**kwargs,
)
if validate_args:
_multilabel_fbeta_score_arg_validation(
beta, num_labels, threshold, average, multidim_average, ignore_index, zero_division
)
self.validate_args = validate_args
self.zero_division = zero_division
self.beta = beta
def compute(self) -> Tensor:
"""Compute metric."""
tp, fp, tn, fn = self._final_state()
return _fbeta_reduce(
tp,
fp,
tn,
fn,
self.beta,
average=self.average,
multidim_average=self.multidim_average,
multilabel=True,
zero_division=self.zero_division,
)
def plot(
self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None
) -> _PLOT_OUT_TYPE:
"""Plot a single or multiple values from the metric.
Args:
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results.
If no value is provided, will automatically call `metric.compute` and plot that result.
ax: An matplotlib axis object. If provided will add plot to that axis
Returns:
Figure and Axes object
Raises:
ModuleNotFoundError:
If `matplotlib` is not installed
.. plot::
:scale: 75
>>> from torch import rand, randint
>>> # Example plotting a single value
>>> from torchmetrics.classification import MultilabelFBetaScore
>>> metric = MultilabelFBetaScore(num_labels=3, beta=2.0)
>>> metric.update(randint(2, (20, 3)), randint(2, (20, 3)))
>>> fig_, ax_ = metric.plot()
.. plot::
:scale: 75
>>> from torch import rand, randint
>>> # Example plotting multiple values
>>> from torchmetrics.classification import MultilabelFBetaScore
>>> metric = MultilabelFBetaScore(num_labels=3, beta=2.0)
>>> values = [ ]
>>> for _ in range(10):
... values.append(metric(randint(2, (20, 3)), randint(2, (20, 3))))
>>> fig_, ax_ = metric.plot(values)
"""
return self._plot(val, ax)
class BinaryF1Score(BinaryFBetaScore):
r"""Compute F-1 score for binary tasks.
.. math::
F_{1} = 2\frac{\text{precision} * \text{recall}}{(\text{precision}) + \text{recall}}
The metric is only proper defined when :math:`\text{TP} + \text{FP} \neq 0 \wedge \text{TP} + \text{FN} \neq 0`
where :math:`\text{TP}`, :math:`\text{FP}` and :math:`\text{FN}` represent the number of true positives, false
positives and false negatives respectively. If this case is encountered a score of `zero_division`
(0 or 1, default is 0) is returned.
As input to ``forward`` and ``update`` the metric accepts the following input:
- ``preds`` (:class:`~torch.Tensor`): An int or float tensor of shape ``(N, ...)``. If preds is a floating point
tensor with values outside [0,1] range we consider the input to be logits and will auto apply sigmoid per
element. Additionally, we convert to int tensor with thresholding using the value in ``threshold``.
- ``target`` (:class:`~torch.Tensor`): An int tensor of shape ``(N, ...)``
As output to ``forward`` and ``compute`` the metric returns the following output:
- ``bf1s`` (:class:`~torch.Tensor`): A tensor whose returned shape depends on the ``multidim_average`` argument:
- If ``multidim_average`` is set to ``global``, the metric returns a scalar value.
- If ``multidim_average`` is set to ``samplewise``, the metric returns ``(N,)`` vector consisting of a scalar
value per sample.
If ``multidim_average`` is set to ``samplewise`` we expect at least one additional dimension ``...`` to be present,
which the reduction will then be applied over instead of the sample dimension ``N``.
Args:
threshold: Threshold for transforming probability to binary {0,1} predictions
multidim_average:
Defines how additionally dimensions ``...`` should be handled. Should be one of the following:
- ``global``: Additional dimensions are flatted along the batch dimension
- ``samplewise``: Statistic will be calculated independently for each sample on the ``N`` axis.
The statistics in this case are calculated over the additional dimensions.
ignore_index:
Specifies a target value that is ignored and does not contribute to the metric calculation
validate_args: bool indicating if input arguments and tensors should be validated for correctness.
Set to ``False`` for faster computations.
zero_division: Should be `0` or `1`. The value returned when
:math:`\text{TP} + \text{FP} = 0 \wedge \text{TP} + \text{FN} = 0`.
Example (preds is int tensor):
>>> from torch import tensor
>>> from torchmetrics.classification import BinaryF1Score
>>> target = tensor([0, 1, 0, 1, 0, 1])
>>> preds = tensor([0, 0, 1, 1, 0, 1])
>>> metric = BinaryF1Score()
>>> metric(preds, target)
tensor(0.6667)
Example (preds is float tensor):
>>> from torchmetrics.classification import BinaryF1Score
>>> target = tensor([0, 1, 0, 1, 0, 1])
>>> preds = tensor([0.11, 0.22, 0.84, 0.73, 0.33, 0.92])
>>> metric = BinaryF1Score()
>>> metric(preds, target)
tensor(0.6667)
Example (multidim tensors):
>>> from torchmetrics.classification import BinaryF1Score
>>> target = tensor([[[0, 1], [1, 0], [0, 1]], [[1, 1], [0, 0], [1, 0]]])
>>> preds = tensor([[[0.59, 0.91], [0.91, 0.99], [0.63, 0.04]],
... [[0.38, 0.04], [0.86, 0.780], [0.45, 0.37]]])
>>> metric = BinaryF1Score(multidim_average='samplewise')
>>> metric(preds, target)
tensor([0.5000, 0.0000])
"""
is_differentiable: bool = False
higher_is_better: Optional[bool] = True
full_state_update: bool = False
plot_lower_bound: float = 0.0
plot_upper_bound: float = 1.0
def __init__(
self,
threshold: float = 0.5,
multidim_average: Literal["global", "samplewise"] = "global",
ignore_index: Optional[int] = None,
validate_args: bool = True,
zero_division: float = 0,
**kwargs: Any,
) -> None:
super().__init__(
beta=1.0,
threshold=threshold,
multidim_average=multidim_average,
ignore_index=ignore_index,
validate_args=validate_args,
zero_division=zero_division,
**kwargs,
)
def plot(
self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None
) -> _PLOT_OUT_TYPE:
"""Plot a single or multiple values from the metric.
Args:
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results.
If no value is provided, will automatically call `metric.compute` and plot that result.
ax: An matplotlib axis object. If provided will add plot to that axis
Returns:
Figure object and Axes object
Raises:
ModuleNotFoundError:
If `matplotlib` is not installed
.. plot::
:scale: 75
>>> from torch import rand, randint
>>> # Example plotting a single value
>>> from torchmetrics.classification import BinaryF1Score
>>> metric = BinaryF1Score()
>>> metric.update(rand(10), randint(2,(10,)))
>>> fig_, ax_ = metric.plot()
.. plot::
:scale: 75
>>> from torch import rand, randint
>>> # Example plotting multiple values
>>> from torchmetrics.classification import BinaryF1Score
>>> metric = BinaryF1Score()
>>> values = [ ]
>>> for _ in range(10):
... values.append(metric(rand(10), randint(2,(10,))))
>>> fig_, ax_ = metric.plot(values)
"""
return self._plot(val, ax)
class MulticlassF1Score(MulticlassFBetaScore):
r"""Compute F-1 score for multiclass tasks.
.. math::
F_{1} = 2\frac{\text{precision} * \text{recall}}{(\text{precision}) + \text{recall}}
The metric is only proper defined when :math:`\text{TP} + \text{FP} \neq 0 \wedge \text{TP} + \text{FN} \neq 0`
where :math:`\text{TP}`, :math:`\text{FP}` and :math:`\text{FN}` represent the number of true positives, false
positives and false negatives respectively. If this case is encountered for any class, the metric for that class
will be set to `zero_division` (0 or 1, default is 0) and the overall metric may therefore be affected in turn.
As input to ``forward`` and ``update`` the metric accepts the following input:
- ``preds`` (:class:`~torch.Tensor`): An int tensor of shape ``(N, ...)`` or float tensor of shape ``(N, C, ..)``.
If preds is a floating point we apply ``torch.argmax`` along the ``C`` dimension to automatically convert
probabilities/logits into an int tensor.
- ``target`` (:class:`~torch.Tensor`): An int tensor of shape ``(N, ...)``
As output to ``forward`` and ``compute`` the metric returns the following output:
- ``mcf1s`` (:class:`~torch.Tensor`): A tensor whose returned shape depends on the ``average`` and
``multidim_average`` arguments:
- If ``multidim_average`` is set to ``global``:
- If ``average='micro'/'macro'/'weighted'``, the output will be a scalar tensor
- If ``average=None/'none'``, the shape will be ``(C,)``
- If ``multidim_average`` is set to ``samplewise``:
- If ``average='micro'/'macro'/'weighted'``, the shape will be ``(N,)``
- If ``average=None/'none'``, the shape will be ``(N, C)``
If ``multidim_average`` is set to ``samplewise`` we expect at least one additional dimension ``...`` to be present,
which the reduction will then be applied over instead of the sample dimension ``N``.
Args:
preds: Tensor with predictions
target: Tensor with true labels
num_classes: Integer specifying the number of classes
average:
Defines the reduction that is applied over labels. Should be one of the following:
- ``micro``: Sum statistics over all labels
- ``macro``: Calculate statistics for each label and average them
- ``weighted``: calculates statistics for each label and computes weighted average using their support
- ``"none"`` or ``None``: calculates statistic for each label and applies no reduction
top_k:
Number of highest probability or logit score predictions considered to find the correct label.
Only works when ``preds`` contain probabilities/logits.
multidim_average:
Defines how additionally dimensions ``...`` should be handled. Should be one of the following:
- ``global``: Additional dimensions are flatted along the batch dimension
- ``samplewise``: Statistic will be calculated independently for each sample on the ``N`` axis.
The statistics in this case are calculated over the additional dimensions.
ignore_index:
Specifies a target value that is ignored and does not contribute to the metric calculation
validate_args: bool indicating if input arguments and tensors should be validated for correctness.
Set to ``False`` for faster computations.
zero_division: Should be `0` or `1`. The value returned when
:math:`\text{TP} + \text{FP} = 0 \wedge \text{TP} + \text{FN} = 0`.
Example (preds is int tensor):
>>> from torch import tensor
>>> from torchmetrics.classification import MulticlassF1Score
>>> target = tensor([2, 1, 0, 0])
>>> preds = tensor([2, 1, 0, 1])
>>> metric = MulticlassF1Score(num_classes=3)
>>> metric(preds, target)
tensor(0.7778)
>>> mcf1s = MulticlassF1Score(num_classes=3, average=None)
>>> mcf1s(preds, target)
tensor([0.6667, 0.6667, 1.0000])
Example (preds is float tensor):
>>> from torchmetrics.classification import MulticlassF1Score
>>> target = tensor([2, 1, 0, 0])
>>> preds = tensor([[0.16, 0.26, 0.58],
... [0.22, 0.61, 0.17],
... [0.71, 0.09, 0.20],
... [0.05, 0.82, 0.13]])
>>> metric = MulticlassF1Score(num_classes=3)
>>> metric(preds, target)
tensor(0.7778)
>>> mcf1s = MulticlassF1Score(num_classes=3, average=None)
>>> mcf1s(preds, target)
tensor([0.6667, 0.6667, 1.0000])
Example (multidim tensors):
>>> from torchmetrics.classification import MulticlassF1Score
>>> target = tensor([[[0, 1], [2, 1], [0, 2]], [[1, 1], [2, 0], [1, 2]]])
>>> preds = tensor([[[0, 2], [2, 0], [0, 1]], [[2, 2], [2, 1], [1, 0]]])
>>> metric = MulticlassF1Score(num_classes=3, multidim_average='samplewise')
>>> metric(preds, target)
tensor([0.4333, 0.2667])
>>> mcf1s = MulticlassF1Score(num_classes=3, multidim_average='samplewise', average=None)
>>> mcf1s(preds, target)
tensor([[0.8000, 0.0000, 0.5000],
[0.0000, 0.4000, 0.4000]])
"""
is_differentiable: bool = False
higher_is_better: Optional[bool] = True
full_state_update: bool = False
plot_lower_bound: float = 0.0
plot_upper_bound: float = 1.0
plot_legend_name: str = "Class"
def __init__(
self,
num_classes: int,
top_k: int = 1,
average: Optional[Literal["micro", "macro", "weighted", "none"]] = "macro",
multidim_average: Literal["global", "samplewise"] = "global",
ignore_index: Optional[int] = None,
validate_args: bool = True,
zero_division: float = 0,
**kwargs: Any,
) -> None:
super().__init__(
beta=1.0,
num_classes=num_classes,
top_k=top_k,
average=average,
multidim_average=multidim_average,
ignore_index=ignore_index,
validate_args=validate_args,
zero_division=zero_division,
**kwargs,
)
def plot(
self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None
) -> _PLOT_OUT_TYPE:
"""Plot a single or multiple values from the metric.
Args:
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results.
If no value is provided, will automatically call `metric.compute` and plot that result.
ax: An matplotlib axis object. If provided will add plot to that axis
Returns:
Figure object and Axes object
Raises:
ModuleNotFoundError:
If `matplotlib` is not installed
.. plot::
:scale: 75
>>> from torch import randint
>>> # Example plotting a single value per class
>>> from torchmetrics.classification import MulticlassF1Score
>>> metric = MulticlassF1Score(num_classes=3, average=None)
>>> metric.update(randint(3, (20,)), randint(3, (20,)))
>>> fig_, ax_ = metric.plot()
.. plot::
:scale: 75
>>> from torch import randint
>>> # Example plotting a multiple values per class
>>> from torchmetrics.classification import MulticlassF1Score
>>> metric = MulticlassF1Score(num_classes=3, average=None)
>>> values = []
>>> for _ in range(20):
... values.append(metric(randint(3, (20,)), randint(3, (20,))))
>>> fig_, ax_ = metric.plot(values)
"""
return self._plot(val, ax)
class MultilabelF1Score(MultilabelFBetaScore):
r"""Compute F-1 score for multilabel tasks.
.. math::
F_{1} = 2\frac{\text{precision} * \text{recall}}{(\text{precision}) + \text{recall}}
The metric is only proper defined when :math:`\text{TP} + \text{FP} \neq 0 \wedge \text{TP} + \text{FN} \neq 0`
where :math:`\text{TP}`, :math:`\text{FP}` and :math:`\text{FN}` represent the number of true positives, false
positives and false negatives respectively. If this case is encountered for any label, the metric for that label
will be set to `zero_division` (0 or 1, default is 0) and the overall metric may therefore be affected in turn.
As input to ``forward`` and ``update`` the metric accepts the following input:
- ``preds`` (:class:`~torch.Tensor`): An int or float tensor of shape ``(N, C, ...)``.
If preds is a floating point tensor with values outside [0,1] range we consider the input to be logits and
will auto apply sigmoid per element. Additionally, we convert to int tensor with thresholding using the value
in ``threshold``.
- ``target`` (:class:`~torch.Tensor`): An int tensor of shape ``(N, C, ...)``.
As output to ``forward`` and ``compute`` the metric returns the following output:
- ``mlf1s`` (:class:`~torch.Tensor`): A tensor whose returned shape depends on the ``average`` and
``multidim_average`` arguments:
- If ``multidim_average`` is set to ``global``:
- If ``average='micro'/'macro'/'weighted'``, the output will be a scalar tensor
- If ``average=None/'none'``, the shape will be ``(C,)``
- If ``multidim_average`` is set to ``samplewise``:
- If ``average='micro'/'macro'/'weighted'``, the shape will be ``(N,)``
- If ``average=None/'none'``, the shape will be ``(N, C)```
If ``multidim_average`` is set to ``samplewise`` we expect at least one additional dimension ``...`` to be present,
which the reduction will then be applied over instead of the sample dimension ``N``.
Args:
num_labels: Integer specifying the number of labels
threshold: Threshold for transforming probability to binary (0,1) predictions
average:
Defines the reduction that is applied over labels. Should be one of the following:
- ``micro``: Sum statistics over all labels
- ``macro``: Calculate statistics for each label and average them
- ``weighted``: calculates statistics for each label and computes weighted average using their support
- ``"none"`` or ``None``: calculates statistic for each label and applies no reduction
multidim_average:
Defines how additionally dimensions ``...`` should be handled. Should be one of the following:
- ``global``: Additional dimensions are flatted along the batch dimension
- ``samplewise``: Statistic will be calculated independently for each sample on the ``N`` axis.
The statistics in this case are calculated over the additional dimensions.
ignore_index:
Specifies a target value that is ignored and does not contribute to the metric calculation
validate_args: bool indicating if input arguments and tensors should be validated for correctness.
Set to ``False`` for faster computations.
zero_division: Should be `0` or `1`. The value returned when
:math:`\text{TP} + \text{FP} = 0 \wedge \text{TP} + \text{FN} = 0`.
Example (preds is int tensor):
>>> from torch import tensor
>>> from torchmetrics.classification import MultilabelF1Score
>>> target = tensor([[0, 1, 0], [1, 0, 1]])
>>> preds = tensor([[0, 0, 1], [1, 0, 1]])
>>> metric = MultilabelF1Score(num_labels=3)
>>> metric(preds, target)
tensor(0.5556)
>>> mlf1s = MultilabelF1Score(num_labels=3, average=None)
>>> mlf1s(preds, target)
tensor([1.0000, 0.0000, 0.6667])
Example (preds is float tensor):
>>> from torchmetrics.classification import MultilabelF1Score
>>> target = tensor([[0, 1, 0], [1, 0, 1]])
>>> preds = tensor([[0.11, 0.22, 0.84], [0.73, 0.33, 0.92]])
>>> metric = MultilabelF1Score(num_labels=3)
>>> metric(preds, target)
tensor(0.5556)
>>> mlf1s = MultilabelF1Score(num_labels=3, average=None)
>>> mlf1s(preds, target)
tensor([1.0000, 0.0000, 0.6667])
Example (multidim tensors):
>>> from torchmetrics.classification import MultilabelF1Score
>>> target = tensor([[[0, 1], [1, 0], [0, 1]], [[1, 1], [0, 0], [1, 0]]])
>>> preds = tensor([[[0.59, 0.91], [0.91, 0.99], [0.63, 0.04]],
... [[0.38, 0.04], [0.86, 0.780], [0.45, 0.37]]])
>>> metric = MultilabelF1Score(num_labels=3, multidim_average='samplewise')
>>> metric(preds, target)
tensor([0.4444, 0.0000])
>>> mlf1s = MultilabelF1Score(num_labels=3, multidim_average='samplewise', average=None)
>>> mlf1s(preds, target)
tensor([[0.6667, 0.6667, 0.0000],
[0.0000, 0.0000, 0.0000]])
"""
is_differentiable: bool = False
higher_is_better: Optional[bool] = True
full_state_update: bool = False
plot_lower_bound: float = 0.0
plot_upper_bound: float = 1.0
plot_legend_name: str = "Label"
def __init__(
self,
num_labels: int,
threshold: float = 0.5,
average: Optional[Literal["micro", "macro", "weighted", "none"]] = "macro",
multidim_average: Literal["global", "samplewise"] = "global",
ignore_index: Optional[int] = None,
validate_args: bool = True,
zero_division: float = 0,
**kwargs: Any,
) -> None:
super().__init__(
beta=1.0,
num_labels=num_labels,
threshold=threshold,
average=average,
multidim_average=multidim_average,
ignore_index=ignore_index,
validate_args=validate_args,
zero_division=zero_division,
**kwargs,
)
def plot(
self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None
) -> _PLOT_OUT_TYPE:
"""Plot a single or multiple values from the metric.
Args:
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results.
If no value is provided, will automatically call `metric.compute` and plot that result.
ax: An matplotlib axis object. If provided will add plot to that axis
Returns:
Figure and Axes object
Raises:
ModuleNotFoundError:
If `matplotlib` is not installed
.. plot::
:scale: 75
>>> from torch import rand, randint
>>> # Example plotting a single value
>>> from torchmetrics.classification import MultilabelF1Score
>>> metric = MultilabelF1Score(num_labels=3)
>>> metric.update(randint(2, (20, 3)), randint(2, (20, 3)))
>>> fig_, ax_ = metric.plot()
.. plot::
:scale: 75
>>> from torch import rand, randint
>>> # Example plotting multiple values
>>> from torchmetrics.classification import MultilabelF1Score
>>> metric = MultilabelF1Score(num_labels=3)
>>> values = [ ]
>>> for _ in range(10):
... values.append(metric(randint(2, (20, 3)), randint(2, (20, 3))))
>>> fig_, ax_ = metric.plot(values)
"""
return self._plot(val, ax)
class FBetaScore(_ClassificationTaskWrapper):
r"""Compute `F-score`_ metric.
.. math::
F_{\beta} = (1 + \beta^2) * \frac{\text{precision} * \text{recall}}
{(\beta^2 * \text{precision}) + \text{recall}}
The metric is only proper defined when :math:`\text{TP} + \text{FP} \neq 0 \wedge \text{TP} + \text{FN} \neq 0`
where :math:`\text{TP}`, :math:`\text{FP}` and :math:`\text{FN}` represent the number of true positives, false
positives and false negatives respectively. If this case is encountered for any class/label, the metric for that
class/label will be set to `zero_division` (0 or 1, default is 0) and the overall metric may therefore be
affected in turn.
This function is a simple wrapper to get the task specific versions of this metric, which is done by setting the
``task`` argument to either ``'binary'``, ``'multiclass'`` or ``multilabel``. See the documentation of
:class:`~torchmetrics.classification.BinaryFBetaScore`,
:class:`~torchmetrics.classification.MulticlassFBetaScore` and
:class:`~torchmetrics.classification.MultilabelFBetaScore` for the specific details of each argument influence
and examples.
Legcy Example:
>>> from torch import tensor
>>> target = tensor([0, 1, 2, 0, 1, 2])
>>> preds = tensor([0, 2, 1, 0, 0, 1])
>>> f_beta = FBetaScore(task="multiclass", num_classes=3, beta=0.5)
>>> f_beta(preds, target)
tensor(0.3333)
"""
def __new__( # type: ignore[misc]
cls: type["FBetaScore"],
task: Literal["binary", "multiclass", "multilabel"],
beta: float = 1.0,
threshold: float = 0.5,
num_classes: Optional[int] = None,
num_labels: Optional[int] = None,
average: Optional[Literal["micro", "macro", "weighted", "none"]] = "micro",
multidim_average: Optional[Literal["global", "samplewise"]] = "global",
top_k: Optional[int] = 1,
ignore_index: Optional[int] = None,
validate_args: bool = True,
zero_division: float = 0,
**kwargs: Any,
) -> Metric:
"""Initialize task metric."""
task = ClassificationTask.from_str(task)
assert multidim_average is not None # noqa: S101 # needed for mypy
kwargs.update({
"multidim_average": multidim_average,
"ignore_index": ignore_index,
"validate_args": validate_args,
"zero_division": zero_division,
})
if task == ClassificationTask.BINARY:
return BinaryFBetaScore(beta, threshold, **kwargs)
if task == ClassificationTask.MULTICLASS:
if not isinstance(num_classes, int):
raise ValueError(f"`num_classes` is expected to be `int` but `{type(num_classes)} was passed.`")
if not isinstance(top_k, int):
raise ValueError(f"`top_k` is expected to be `int` but `{type(top_k)} was passed.`")
return MulticlassFBetaScore(beta, num_classes, top_k, average, **kwargs)
if task == ClassificationTask.MULTILABEL:
if not isinstance(num_labels, int):
raise ValueError(f"`num_labels` is expected to be `int` but `{type(num_labels)} was passed.`")
return MultilabelFBetaScore(beta, num_labels, threshold, average, **kwargs)
raise ValueError(f"Task {task} not supported!")
class F1Score(_ClassificationTaskWrapper):
r"""Compute F-1 score.
.. math::
F_{1} = 2\frac{\text{precision} * \text{recall}}{(\text{precision}) + \text{recall}}
The metric is only proper defined when :math:`\text{TP} + \text{FP} \neq 0 \wedge \text{TP} + \text{FN} \neq 0`
where :math:`\text{TP}`, :math:`\text{FP}` and :math:`\text{FN}` represent the number of true positives, false
positives and false negatives respectively. If this case is encountered for any class/label, the metric for that
class/label will be set to `zero_division` (0 or 1, default is 0) and the overall metric may therefore be
affected in turn.
This function is a simple wrapper to get the task specific versions of this metric, which is done by setting the
``task`` argument to either ``'binary'``, ``'multiclass'`` or ``multilabel``. See the documentation of
:class:`~torchmetrics.classification.BinaryF1Score`, :class:`~torchmetrics.classification.MulticlassF1Score` and
:class:`~torchmetrics.classification.MultilabelF1Score` for the specific details of each argument influence and
examples.
Legacy Example:
>>> from torch import tensor
>>> target = tensor([0, 1, 2, 0, 1, 2])
>>> preds = tensor([0, 2, 1, 0, 0, 1])
>>> f1 = F1Score(task="multiclass", num_classes=3)
>>> f1(preds, target)
tensor(0.3333)
"""
def __new__( # type: ignore[misc]
cls: type["F1Score"],
task: Literal["binary", "multiclass", "multilabel"],
threshold: float = 0.5,
num_classes: Optional[int] = None,
num_labels: Optional[int] = None,
average: Optional[Literal["micro", "macro", "weighted", "none"]] = "micro",
multidim_average: Optional[Literal["global", "samplewise"]] = "global",
top_k: Optional[int] = 1,
ignore_index: Optional[int] = None,
validate_args: bool = True,
zero_division: float = 0,
**kwargs: Any,
) -> Metric:
"""Initialize task metric."""
task = ClassificationTask.from_str(task)
assert multidim_average is not None # noqa: S101 # needed for mypy
kwargs.update({
"multidim_average": multidim_average,
"ignore_index": ignore_index,
"validate_args": validate_args,
"zero_division": zero_division,
})
if task == ClassificationTask.BINARY:
return BinaryF1Score(threshold, **kwargs)
if task == ClassificationTask.MULTICLASS:
if not isinstance(num_classes, int):
raise ValueError(f"`num_classes` is expected to be `int` but `{type(num_classes)} was passed.`")
if not isinstance(top_k, int):
raise ValueError(f"`top_k` is expected to be `int` but `{type(top_k)} was passed.`")
return MulticlassF1Score(num_classes, top_k, average, **kwargs)
if task == ClassificationTask.MULTILABEL:
if not isinstance(num_labels, int):
raise ValueError(f"`num_labels` is expected to be `int` but `{type(num_labels)} was passed.`")
return MultilabelF1Score(num_labels, threshold, average, **kwargs)
raise ValueError(f"Task {task} not supported!")