|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from collections.abc import Sequence |
|
from typing import Any, Optional, Union |
|
|
|
import torch |
|
from torch import Tensor |
|
from typing_extensions import Literal |
|
|
|
from torchmetrics.classification.base import _ClassificationTaskWrapper |
|
from torchmetrics.functional.classification.exact_match import ( |
|
_exact_match_reduce, |
|
_multiclass_exact_match_update, |
|
_multilabel_exact_match_update, |
|
) |
|
from torchmetrics.functional.classification.stat_scores import ( |
|
_multiclass_stat_scores_arg_validation, |
|
_multiclass_stat_scores_format, |
|
_multiclass_stat_scores_tensor_validation, |
|
_multilabel_stat_scores_arg_validation, |
|
_multilabel_stat_scores_format, |
|
_multilabel_stat_scores_tensor_validation, |
|
) |
|
from torchmetrics.metric import Metric |
|
from torchmetrics.utilities.data import dim_zero_cat |
|
from torchmetrics.utilities.enums import ClassificationTaskNoBinary |
|
from torchmetrics.utilities.imports import _MATPLOTLIB_AVAILABLE |
|
from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE |
|
|
|
if not _MATPLOTLIB_AVAILABLE: |
|
__doctest_skip__ = ["MulticlassExactMatch.plot", "MultilabelExactMatch.plot"] |
|
|
|
|
|
class MulticlassExactMatch(Metric): |
|
r"""Compute Exact match (also known as subset accuracy) for multiclass tasks. |
|
|
|
Exact Match is a stricter version of accuracy where all labels have to match exactly for the sample to be |
|
correctly classified. |
|
|
|
As input to ``forward`` and ``update`` the metric accepts the following input: |
|
|
|
- ``preds`` (:class:`~torch.Tensor`): An int tensor of shape ``(N, ...)`` or float tensor of shape ``(N, C, ..)``. |
|
If preds is a floating point we apply ``torch.argmax`` along the ``C`` dimension to automatically convert |
|
probabilities/logits into an int tensor. |
|
- ``target`` (:class:`~torch.Tensor`): An int tensor of shape ``(N, ...)``. |
|
|
|
As output to ``forward`` and ``compute`` the metric returns the following output: |
|
|
|
- ``mcem`` (:class:`~torch.Tensor`): A tensor whose returned shape depends on the ``multidim_average`` argument: |
|
|
|
- If ``multidim_average`` is set to ``global`` the output will be a scalar tensor |
|
- If ``multidim_average`` is set to ``samplewise`` the output will be a tensor of shape ``(N,)`` |
|
|
|
If ``multidim_average`` is set to ``samplewise`` we expect at least one additional dimension ``...`` to be present, |
|
which the reduction will then be applied over instead of the sample dimension ``N``. |
|
|
|
Args: |
|
num_classes: Integer specifying the number of labels |
|
multidim_average: |
|
Defines how additionally dimensions ``...`` should be handled. Should be one of the following: |
|
|
|
- ``global``: Additional dimensions are flatted along the batch dimension |
|
- ``samplewise``: Statistic will be calculated independently for each sample on the ``N`` axis. |
|
The statistics in this case are calculated over the additional dimensions. |
|
|
|
ignore_index: |
|
Specifies a target value that is ignored and does not contribute to the metric calculation |
|
validate_args: bool indicating if input arguments and tensors should be validated for correctness. |
|
Set to ``False`` for faster computations. |
|
|
|
Example (multidim tensors): |
|
>>> from torch import tensor |
|
>>> from torchmetrics.classification import MulticlassExactMatch |
|
>>> target = tensor([[[0, 1], [2, 1], [0, 2]], [[1, 1], [2, 0], [1, 2]]]) |
|
>>> preds = tensor([[[0, 1], [2, 1], [0, 2]], [[2, 2], [2, 1], [1, 0]]]) |
|
>>> metric = MulticlassExactMatch(num_classes=3, multidim_average='global') |
|
>>> metric(preds, target) |
|
tensor(0.5000) |
|
|
|
Example (multidim tensors): |
|
>>> from torchmetrics.classification import MulticlassExactMatch |
|
>>> target = tensor([[[0, 1], [2, 1], [0, 2]], [[1, 1], [2, 0], [1, 2]]]) |
|
>>> preds = tensor([[[0, 1], [2, 1], [0, 2]], [[2, 2], [2, 1], [1, 0]]]) |
|
>>> metric = MulticlassExactMatch(num_classes=3, multidim_average='samplewise') |
|
>>> metric(preds, target) |
|
tensor([1., 0.]) |
|
|
|
""" |
|
|
|
total: Tensor |
|
is_differentiable: bool = False |
|
higher_is_better: bool = True |
|
full_state_update: bool = False |
|
plot_lower_bound: float = 0.0 |
|
plot_upper_bound: float = 1.0 |
|
plot_legend_name: str = "Class" |
|
|
|
def __init__( |
|
self, |
|
num_classes: int, |
|
multidim_average: Literal["global", "samplewise"] = "global", |
|
ignore_index: Optional[int] = None, |
|
validate_args: bool = True, |
|
**kwargs: Any, |
|
) -> None: |
|
super().__init__(**kwargs) |
|
top_k, average = 1, None |
|
if validate_args: |
|
_multiclass_stat_scores_arg_validation(num_classes, top_k, average, multidim_average, ignore_index) |
|
self.num_classes = num_classes |
|
self.multidim_average = multidim_average |
|
self.ignore_index = ignore_index |
|
self.validate_args = validate_args |
|
|
|
self.add_state( |
|
"correct", |
|
torch.zeros(1, dtype=torch.long) if self.multidim_average == "global" else [], |
|
dist_reduce_fx="sum" if self.multidim_average == "global" else "cat", |
|
) |
|
self.add_state( |
|
"total", |
|
torch.zeros(1, dtype=torch.long), |
|
dist_reduce_fx="sum" if self.multidim_average == "global" else "mean", |
|
) |
|
|
|
def update(self, preds: Tensor, target: Tensor) -> None: |
|
"""Update metric states with predictions and targets.""" |
|
if self.validate_args: |
|
_multiclass_stat_scores_tensor_validation( |
|
preds, target, self.num_classes, self.multidim_average, self.ignore_index |
|
) |
|
preds, target = _multiclass_stat_scores_format(preds, target, 1) |
|
|
|
correct, total = _multiclass_exact_match_update(preds, target, self.multidim_average, self.ignore_index) |
|
if self.multidim_average == "samplewise": |
|
if not isinstance(self.correct, list): |
|
raise TypeError("Expected `self.correct` to be a list in samplewise mode.") |
|
self.correct.append(correct) |
|
|
|
if not isinstance(self.total, Tensor): |
|
raise TypeError("Expected `self.total` to be a Tensor in samplewise mode.") |
|
self.total = total |
|
else: |
|
if not isinstance(self.correct, Tensor): |
|
raise TypeError("Expected `self.correct` to be a tensor in global mode.") |
|
self.correct += correct |
|
|
|
if not isinstance(self.total, Tensor): |
|
raise TypeError("Expected `self.total` to be a Tensor in samplewise mode.") |
|
self.total += total |
|
|
|
def compute(self) -> Tensor: |
|
"""Compute metric.""" |
|
correct = dim_zero_cat(self.correct) if isinstance(self.correct, list) else self.correct |
|
|
|
|
|
if not isinstance(correct, Tensor) or not isinstance(self.total, Tensor): |
|
raise TypeError("Expected `correct` and `total` to be tensors after processing.") |
|
|
|
return _exact_match_reduce(correct, self.total) |
|
|
|
def plot( |
|
self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None |
|
) -> _PLOT_OUT_TYPE: |
|
"""Plot a single or multiple values from the metric. |
|
|
|
Args: |
|
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results. |
|
If no value is provided, will automatically call `metric.compute` and plot that result. |
|
ax: An matplotlib axis object. If provided will add plot to that axis |
|
|
|
Returns: |
|
Figure object and Axes object |
|
|
|
Raises: |
|
ModuleNotFoundError: |
|
If `matplotlib` is not installed |
|
|
|
.. plot:: |
|
:scale: 75 |
|
|
|
>>> # Example plotting a single value per class |
|
>>> from torch import randint |
|
>>> from torchmetrics.classification import MulticlassExactMatch |
|
>>> metric = MulticlassExactMatch(num_classes=3) |
|
>>> metric.update(randint(3, (20,5)), randint(3, (20,5))) |
|
>>> fig_, ax_ = metric.plot() |
|
|
|
.. plot:: |
|
:scale: 75 |
|
|
|
>>> from torch import randint |
|
>>> # Example plotting a multiple values per class |
|
>>> from torchmetrics.classification import MulticlassExactMatch |
|
>>> metric = MulticlassExactMatch(num_classes=3) |
|
>>> values = [] |
|
>>> for _ in range(20): |
|
... values.append(metric(randint(3, (20,5)), randint(3, (20,5)))) |
|
>>> fig_, ax_ = metric.plot(values) |
|
|
|
""" |
|
return self._plot(val, ax) |
|
|
|
|
|
class MultilabelExactMatch(Metric): |
|
r"""Compute Exact match (also known as subset accuracy) for multilabel tasks. |
|
|
|
Exact Match is a stricter version of accuracy where all labels have to match exactly for the sample to be |
|
correctly classified. |
|
|
|
As input to ``forward`` and ``update`` the metric accepts the following input: |
|
|
|
- ``preds`` (:class:`~torch.Tensor`): An int tensor or float tensor of shape ``(N, C, ..)``. If preds is a |
|
floating point tensor with values outside [0,1] range we consider the input to be logits and will auto apply |
|
sigmoid per element. Additionally, we convert to int tensor with thresholding using the value in ``threshold``. |
|
- ``target`` (:class:`~torch.Tensor`): An int tensor of shape ``(N, C, ...)``. |
|
|
|
As output to ``forward`` and ``compute`` the metric returns the following output: |
|
|
|
- ``mlem`` (:class:`~torch.Tensor`): A tensor whose returned shape depends on the ``multidim_average`` argument: |
|
|
|
- If ``multidim_average`` is set to ``global`` the output will be a scalar tensor |
|
- If ``multidim_average`` is set to ``samplewise`` the output will be a tensor of shape ``(N,)`` |
|
|
|
If ``multidim_average`` is set to ``samplewise`` we expect at least one additional dimension ``...`` to be present, |
|
which the reduction will then be applied over instead of the sample dimension ``N``. |
|
|
|
Args: |
|
num_labels: Integer specifying the number of labels |
|
threshold: Threshold for transforming probability to binary (0,1) predictions |
|
multidim_average: |
|
Defines how additionally dimensions ``...`` should be handled. Should be one of the following: |
|
|
|
- ``global``: Additional dimensions are flatted along the batch dimension |
|
- ``samplewise``: Statistic will be calculated independently for each sample on the ``N`` axis. |
|
The statistics in this case are calculated over the additional dimensions. |
|
|
|
ignore_index: |
|
Specifies a target value that is ignored and does not contribute to the metric calculation |
|
validate_args: bool indicating if input arguments and tensors should be validated for correctness. |
|
Set to ``False`` for faster computations. |
|
|
|
Example (preds is int tensor): |
|
>>> from torch import tensor |
|
>>> from torchmetrics.classification import MultilabelExactMatch |
|
>>> target = tensor([[0, 1, 0], [1, 0, 1]]) |
|
>>> preds = tensor([[0, 0, 1], [1, 0, 1]]) |
|
>>> metric = MultilabelExactMatch(num_labels=3) |
|
>>> metric(preds, target) |
|
tensor(0.5000) |
|
|
|
Example (preds is float tensor): |
|
>>> from torchmetrics.classification import MultilabelExactMatch |
|
>>> target = tensor([[0, 1, 0], [1, 0, 1]]) |
|
>>> preds = tensor([[0.11, 0.22, 0.84], [0.73, 0.33, 0.92]]) |
|
>>> metric = MultilabelExactMatch(num_labels=3) |
|
>>> metric(preds, target) |
|
tensor(0.5000) |
|
|
|
Example (multidim tensors): |
|
>>> from torchmetrics.classification import MultilabelExactMatch |
|
>>> target = tensor([[[0, 1], [1, 0], [0, 1]], [[1, 1], [0, 0], [1, 0]]]) |
|
>>> preds = tensor([[[0.59, 0.91], [0.91, 0.99], [0.63, 0.04]], |
|
... [[0.38, 0.04], [0.86, 0.780], [0.45, 0.37]]]) |
|
>>> metric = MultilabelExactMatch(num_labels=3, multidim_average='samplewise') |
|
>>> metric(preds, target) |
|
tensor([0., 0.]) |
|
|
|
""" |
|
|
|
total: Tensor |
|
is_differentiable: bool = False |
|
higher_is_better: bool = True |
|
full_state_update: bool = False |
|
plot_lower_bound: float = 0.0 |
|
plot_upper_bound: float = 1.0 |
|
plot_legend_name: str = "Label" |
|
|
|
def __init__( |
|
self, |
|
num_labels: int, |
|
threshold: float = 0.5, |
|
multidim_average: Literal["global", "samplewise"] = "global", |
|
ignore_index: Optional[int] = None, |
|
validate_args: bool = True, |
|
**kwargs: Any, |
|
) -> None: |
|
super().__init__(**kwargs) |
|
if validate_args: |
|
_multilabel_stat_scores_arg_validation( |
|
num_labels, threshold, average=None, multidim_average=multidim_average, ignore_index=ignore_index |
|
) |
|
self.num_labels = num_labels |
|
self.threshold = threshold |
|
self.multidim_average = multidim_average |
|
self.ignore_index = ignore_index |
|
self.validate_args = validate_args |
|
|
|
self.add_state( |
|
"correct", |
|
torch.zeros(1, dtype=torch.long) if self.multidim_average == "global" else [], |
|
dist_reduce_fx="sum" if self.multidim_average == "global" else "cat", |
|
) |
|
self.add_state( |
|
"total", |
|
torch.zeros(1, dtype=torch.long), |
|
dist_reduce_fx="sum" if self.multidim_average == "global" else "mean", |
|
) |
|
|
|
def update(self, preds: Tensor, target: Tensor) -> None: |
|
"""Update state with predictions and targets.""" |
|
if self.validate_args: |
|
_multilabel_stat_scores_tensor_validation( |
|
preds, target, self.num_labels, self.multidim_average, self.ignore_index |
|
) |
|
preds, target = _multilabel_stat_scores_format( |
|
preds, target, self.num_labels, self.threshold, self.ignore_index |
|
) |
|
correct, total = _multilabel_exact_match_update(preds, target, self.num_labels, self.multidim_average) |
|
if self.multidim_average == "samplewise": |
|
if not isinstance(self.correct, list): |
|
raise TypeError("Expected `self.correct` to be a list in samplewise mode.") |
|
self.correct.append(correct) |
|
|
|
if not isinstance(self.total, Tensor): |
|
raise TypeError("Expected `self.total` to be a Tensor in samplewise mode.") |
|
self.total = total |
|
else: |
|
if not isinstance(self.correct, Tensor): |
|
raise TypeError("Expected `self.correct` to be a tensor in global mode.") |
|
self.correct += correct |
|
|
|
if not isinstance(self.total, Tensor): |
|
raise TypeError("Expected `self.total` to be a Tensor in samplewise mode.") |
|
self.total += total |
|
|
|
def compute(self) -> Tensor: |
|
"""Compute metric.""" |
|
correct = dim_zero_cat(self.correct) if isinstance(self.correct, list) else self.correct |
|
|
|
|
|
if not isinstance(correct, Tensor) or not isinstance(self.total, Tensor): |
|
raise TypeError("Expected `correct` and `total` to be tensors after processing.") |
|
|
|
return _exact_match_reduce(correct, self.total) |
|
|
|
def plot( |
|
self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None |
|
) -> _PLOT_OUT_TYPE: |
|
"""Plot a single or multiple values from the metric. |
|
|
|
Args: |
|
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results. |
|
If no value is provided, will automatically call `metric.compute` and plot that result. |
|
ax: An matplotlib axis object. If provided will add plot to that axis |
|
|
|
Returns: |
|
Figure and Axes object |
|
|
|
Raises: |
|
ModuleNotFoundError: |
|
If `matplotlib` is not installed |
|
|
|
.. plot:: |
|
:scale: 75 |
|
|
|
>>> # Example plotting a single value |
|
>>> from torch import rand, randint |
|
>>> from torchmetrics.classification import MultilabelExactMatch |
|
>>> metric = MultilabelExactMatch(num_labels=3) |
|
>>> metric.update(randint(2, (20, 3, 5)), randint(2, (20, 3, 5))) |
|
>>> fig_, ax_ = metric.plot() |
|
|
|
.. plot:: |
|
:scale: 75 |
|
|
|
>>> # Example plotting multiple values |
|
>>> from torch import rand, randint |
|
>>> from torchmetrics.classification import MultilabelExactMatch |
|
>>> metric = MultilabelExactMatch(num_labels=3) |
|
>>> values = [ ] |
|
>>> for _ in range(10): |
|
... values.append(metric(randint(2, (20, 3, 5)), randint(2, (20, 3, 5)))) |
|
>>> fig_, ax_ = metric.plot(values) |
|
|
|
""" |
|
return self._plot(val, ax) |
|
|
|
|
|
class ExactMatch(_ClassificationTaskWrapper): |
|
r"""Compute Exact match (also known as subset accuracy). |
|
|
|
Exact Match is a stricter version of accuracy where all labels have to match exactly for the sample to be |
|
correctly classified. |
|
|
|
This module is a simple wrapper to get the task specific versions of this metric, which is done by setting the |
|
``task`` argument to either ``'multiclass'`` or ``multilabel``. See the documentation of |
|
:class:`~torchmetrics.classification.MulticlassExactMatch` and |
|
:class:`~torchmetrics.classification.MultilabelExactMatch` for the specific details of each argument influence and |
|
examples. |
|
|
|
Legacy Example: |
|
>>> from torch import tensor |
|
>>> target = tensor([[[0, 1], [2, 1], [0, 2]], [[1, 1], [2, 0], [1, 2]]]) |
|
>>> preds = tensor([[[0, 1], [2, 1], [0, 2]], [[2, 2], [2, 1], [1, 0]]]) |
|
>>> metric = ExactMatch(task="multiclass", num_classes=3, multidim_average='global') |
|
>>> metric(preds, target) |
|
tensor(0.5000) |
|
|
|
>>> target = tensor([[[0, 1], [2, 1], [0, 2]], [[1, 1], [2, 0], [1, 2]]]) |
|
>>> preds = tensor([[[0, 1], [2, 1], [0, 2]], [[2, 2], [2, 1], [1, 0]]]) |
|
>>> metric = ExactMatch(task="multiclass", num_classes=3, multidim_average='samplewise') |
|
>>> metric(preds, target) |
|
tensor([1., 0.]) |
|
|
|
""" |
|
|
|
def __new__( |
|
cls: type["ExactMatch"], |
|
task: Literal["binary", "multiclass", "multilabel"], |
|
threshold: float = 0.5, |
|
num_classes: Optional[int] = None, |
|
num_labels: Optional[int] = None, |
|
multidim_average: Literal["global", "samplewise"] = "global", |
|
ignore_index: Optional[int] = None, |
|
validate_args: bool = True, |
|
**kwargs: Any, |
|
) -> Metric: |
|
"""Initialize task metric.""" |
|
task = ClassificationTaskNoBinary.from_str(task) |
|
kwargs.update({ |
|
"multidim_average": multidim_average, |
|
"ignore_index": ignore_index, |
|
"validate_args": validate_args, |
|
}) |
|
if task == ClassificationTaskNoBinary.MULTICLASS: |
|
if not isinstance(num_classes, int): |
|
raise ValueError(f"`num_classes` is expected to be `int` but `{type(num_classes)} was passed.`") |
|
return MulticlassExactMatch(num_classes, **kwargs) |
|
if task == ClassificationTaskNoBinary.MULTILABEL: |
|
if not isinstance(num_labels, int): |
|
raise ValueError(f"`num_labels` is expected to be `int` but `{type(num_labels)} was passed.`") |
|
return MultilabelExactMatch(num_labels, threshold, **kwargs) |
|
raise ValueError(f"Task {task} not supported!") |
|
|