jamtur01's picture
Upload folder using huggingface_hub
9c6594c verified
# Copyright The Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections.abc import Sequence
from typing import Any, Optional, Union
from torch import Tensor
from typing_extensions import Literal
from torchmetrics.classification.base import _ClassificationTaskWrapper
from torchmetrics.classification.stat_scores import BinaryStatScores, MulticlassStatScores, MultilabelStatScores
from torchmetrics.functional.classification.accuracy import _accuracy_reduce
from torchmetrics.metric import Metric
from torchmetrics.utilities.enums import ClassificationTask
from torchmetrics.utilities.imports import _MATPLOTLIB_AVAILABLE
from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE
if not _MATPLOTLIB_AVAILABLE:
__doctest_skip__ = ["BinaryAccuracy.plot", "MulticlassAccuracy.plot", "MultilabelAccuracy.plot"]
class BinaryAccuracy(BinaryStatScores):
r"""Compute `Accuracy`_ for binary tasks.
.. math::
\text{Accuracy} = \frac{1}{N}\sum_i^N 1(y_i = \hat{y}_i)
Where :math:`y` is a tensor of target values, and :math:`\hat{y}` is a tensor of predictions.
As input to ``forward`` and ``update`` the metric accepts the following input:
- ``preds`` (:class:`~torch.Tensor`): An int or float tensor of shape ``(N, ...)``. If preds is a floating
point tensor with values outside [0,1] range we consider the input to be logits and will auto apply sigmoid
per element. Additionally, we convert to int tensor with thresholding using the value in ``threshold``.
- ``target`` (:class:`~torch.Tensor`): An int tensor of shape ``(N, ...)``
As output to ``forward`` and ``compute`` the metric returns the following output:
- ``acc`` (:class:`~torch.Tensor`): If ``multidim_average`` is set to ``global``, metric returns a scalar value.
If ``multidim_average`` is set to ``samplewise``, the metric returns ``(N,)`` vector consisting of a scalar
value per sample.
If ``multidim_average`` is set to ``samplewise`` we expect at least one additional dimension ``...`` to be present,
which the reduction will then be applied over instead of the sample dimension ``N``.
Args:
threshold: Threshold for transforming probability to binary {0,1} predictions
multidim_average:
Defines how additionally dimensions ``...`` should be handled. Should be one of the following:
- ``global``: Additional dimensions are flatted along the batch dimension
- ``samplewise``: Statistic will be calculated independently for each sample on the ``N`` axis.
The statistics in this case are calculated over the additional dimensions.
ignore_index:
Specifies a target value that is ignored and does not contribute to the metric calculation
validate_args: bool indicating if input arguments and tensors should be validated for correctness.
Set to ``False`` for faster computations.
Example (preds is int tensor):
>>> from torch import tensor
>>> from torchmetrics.classification import BinaryAccuracy
>>> target = tensor([0, 1, 0, 1, 0, 1])
>>> preds = tensor([0, 0, 1, 1, 0, 1])
>>> metric = BinaryAccuracy()
>>> metric(preds, target)
tensor(0.6667)
Example (preds is float tensor):
>>> from torchmetrics.classification import BinaryAccuracy
>>> target = tensor([0, 1, 0, 1, 0, 1])
>>> preds = tensor([0.11, 0.22, 0.84, 0.73, 0.33, 0.92])
>>> metric = BinaryAccuracy()
>>> metric(preds, target)
tensor(0.6667)
Example (multidim tensors):
>>> from torchmetrics.classification import BinaryAccuracy
>>> target = tensor([[[0, 1], [1, 0], [0, 1]], [[1, 1], [0, 0], [1, 0]]])
>>> preds = tensor([[[0.59, 0.91], [0.91, 0.99], [0.63, 0.04]],
... [[0.38, 0.04], [0.86, 0.780], [0.45, 0.37]]])
>>> metric = BinaryAccuracy(multidim_average='samplewise')
>>> metric(preds, target)
tensor([0.3333, 0.1667])
"""
is_differentiable: bool = False
higher_is_better: bool = True
full_state_update: bool = False
plot_lower_bound: float = 0.0
plot_upper_bound: float = 1.0
def compute(self) -> Tensor:
"""Compute accuracy based on inputs passed in to ``update`` previously."""
tp, fp, tn, fn = self._final_state()
return _accuracy_reduce(tp, fp, tn, fn, average="binary", multidim_average=self.multidim_average)
def plot(
self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None
) -> _PLOT_OUT_TYPE:
"""Plot a single or multiple values from the metric.
Args:
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results.
If no value is provided, will automatically call `metric.compute` and plot that result.
ax: An matplotlib axis object. If provided will add plot to that axis
Returns:
Figure object and Axes object
Raises:
ModuleNotFoundError:
If `matplotlib` is not installed
.. plot::
:scale: 75
>>> from torch import rand, randint
>>> # Example plotting a single value
>>> from torchmetrics.classification import BinaryAccuracy
>>> metric = BinaryAccuracy()
>>> metric.update(rand(10), randint(2,(10,)))
>>> fig_, ax_ = metric.plot()
.. plot::
:scale: 75
>>> from torch import rand, randint
>>> # Example plotting multiple values
>>> from torchmetrics.classification import BinaryAccuracy
>>> metric = BinaryAccuracy()
>>> values = [ ]
>>> for _ in range(10):
... values.append(metric(rand(10), randint(2,(10,))))
>>> fig_, ax_ = metric.plot(values)
"""
return self._plot(val, ax)
class MulticlassAccuracy(MulticlassStatScores):
r"""Compute `Accuracy`_ for multiclass tasks.
.. math::
\text{Accuracy} = \frac{1}{N}\sum_i^N 1(y_i = \hat{y}_i)
Where :math:`y` is a tensor of target values, and :math:`\hat{y}` is a tensor of predictions.
As input to ``forward`` and ``update`` the metric accepts the following input:
- ``preds`` (:class:`~torch.Tensor`): An int tensor of shape ``(N, ...)`` or float tensor
of shape ``(N, C, ..)``. If preds is a floating point we apply ``torch.argmax`` along the ``C`` dimension
to automatically convert probabilities/logits into an int tensor.
- ``target`` (:class:`~torch.Tensor`): An int tensor of shape ``(N, ...)``
As output to ``forward`` and ``compute`` the metric returns the following output:
- ``mca`` (:class:`~torch.Tensor`): A tensor with the accuracy score whose returned shape depends on the
``average`` and ``multidim_average`` arguments:
- If ``multidim_average`` is set to ``global``:
- If ``average='micro'/'macro'/'weighted'``, the output will be a scalar tensor
- If ``average=None/'none'``, the shape will be ``(C,)``
- If ``multidim_average`` is set to ``samplewise``:
- If ``average='micro'/'macro'/'weighted'``, the shape will be ``(N,)``
- If ``average=None/'none'``, the shape will be ``(N, C)``
If ``multidim_average`` is set to ``samplewise`` we expect at least one additional dimension ``...`` to be present,
which the reduction will then be applied over instead of the sample dimension ``N``.
Args:
num_classes: Integer specifying the number of classes
average:
Defines the reduction that is applied over labels. Should be one of the following:
- ``micro``: Sum statistics over all labels
- ``macro``: Calculate statistics for each label and average them
- ``weighted``: calculates statistics for each label and computes weighted average using their support
- ``"none"`` or ``None``: calculates statistic for each label and applies no reduction
top_k:
Number of highest probability or logit score predictions considered to find the correct label.
Only works when ``preds`` contain probabilities/logits.
multidim_average:
Defines how additionally dimensions ``...`` should be handled. Should be one of the following:
- ``global``: Additional dimensions are flatted along the batch dimension
- ``samplewise``: Statistic will be calculated independently for each sample on the ``N`` axis.
The statistics in this case are calculated over the additional dimensions.
ignore_index:
Specifies a target value that is ignored and does not contribute to the metric calculation
validate_args: bool indicating if input arguments and tensors should be validated for correctness.
Set to ``False`` for faster computations.
Example (preds is int tensor):
>>> from torch import tensor
>>> from torchmetrics.classification import MulticlassAccuracy
>>> target = tensor([2, 1, 0, 0])
>>> preds = tensor([2, 1, 0, 1])
>>> metric = MulticlassAccuracy(num_classes=3)
>>> metric(preds, target)
tensor(0.8333)
>>> mca = MulticlassAccuracy(num_classes=3, average=None)
>>> mca(preds, target)
tensor([0.5000, 1.0000, 1.0000])
Example (preds is float tensor):
>>> from torchmetrics.classification import MulticlassAccuracy
>>> target = tensor([2, 1, 0, 0])
>>> preds = tensor([[0.16, 0.26, 0.58],
... [0.22, 0.61, 0.17],
... [0.71, 0.09, 0.20],
... [0.05, 0.82, 0.13]])
>>> metric = MulticlassAccuracy(num_classes=3)
>>> metric(preds, target)
tensor(0.8333)
>>> mca = MulticlassAccuracy(num_classes=3, average=None)
>>> mca(preds, target)
tensor([0.5000, 1.0000, 1.0000])
Example (multidim tensors):
>>> from torchmetrics.classification import MulticlassAccuracy
>>> target = tensor([[[0, 1], [2, 1], [0, 2]], [[1, 1], [2, 0], [1, 2]]])
>>> preds = tensor([[[0, 2], [2, 0], [0, 1]], [[2, 2], [2, 1], [1, 0]]])
>>> metric = MulticlassAccuracy(num_classes=3, multidim_average='samplewise')
>>> metric(preds, target)
tensor([0.5000, 0.2778])
>>> mca = MulticlassAccuracy(num_classes=3, multidim_average='samplewise', average=None)
>>> mca(preds, target)
tensor([[1.0000, 0.0000, 0.5000],
[0.0000, 0.3333, 0.5000]])
"""
is_differentiable: bool = False
higher_is_better: bool = True
full_state_update: bool = False
plot_lower_bound: float = 0.0
plot_upper_bound: float = 1.0
plot_legend_name: str = "Class"
def compute(self) -> Tensor:
"""Compute accuracy based on inputs passed in to ``update`` previously."""
tp, fp, tn, fn = self._final_state()
return _accuracy_reduce(
tp, fp, tn, fn, average=self.average, multidim_average=self.multidim_average, top_k=self.top_k
)
def plot(
self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None
) -> _PLOT_OUT_TYPE:
"""Plot a single or multiple values from the metric.
Args:
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results.
If no value is provided, will automatically call `metric.compute` and plot that result.
ax: An matplotlib axis object. If provided will add plot to that axis
Returns:
Figure object and Axes object
Raises:
ModuleNotFoundError:
If `matplotlib` is not installed
.. plot::
:scale: 75
>>> from torch import randint
>>> # Example plotting a single value per class
>>> from torchmetrics.classification import MulticlassAccuracy
>>> metric = MulticlassAccuracy(num_classes=3, average=None)
>>> metric.update(randint(3, (20,)), randint(3, (20,)))
>>> fig_, ax_ = metric.plot()
.. plot::
:scale: 75
>>> from torch import randint
>>> # Example plotting a multiple values per class
>>> from torchmetrics.classification import MulticlassAccuracy
>>> metric = MulticlassAccuracy(num_classes=3, average=None)
>>> values = []
>>> for _ in range(20):
... values.append(metric(randint(3, (20,)), randint(3, (20,))))
>>> fig_, ax_ = metric.plot(values)
"""
return self._plot(val, ax)
class MultilabelAccuracy(MultilabelStatScores):
r"""Compute `Accuracy`_ for multilabel tasks.
.. math::
\text{Accuracy} = \frac{1}{N}\sum_i^N 1(y_i = \hat{y}_i)
Where :math:`y` is a tensor of target values, and :math:`\hat{y}` is a tensor of predictions.
As input to ``forward`` and ``update`` the metric accepts the following input:
- ``preds`` (:class:`~torch.Tensor`): An int or float tensor of shape ``(N, C, ...)``. If preds is a floating
point tensor with values outside [0,1] range we consider the input to be logits and will auto apply sigmoid per
element. Additionally, we convert to int tensor with thresholding using the value in ``threshold``.
- ``target`` (:class:`~torch.Tensor`): An int tensor of shape ``(N, C, ...)``
As output to ``forward`` and ``compute`` the metric returns the following output:
- ``mla`` (:class:`~torch.Tensor`): A tensor with the accuracy score whose returned shape depends on the
``average`` and ``multidim_average`` arguments:
- If ``multidim_average`` is set to ``global``:
- If ``average='micro'/'macro'/'weighted'``, the output will be a scalar tensor
- If ``average=None/'none'``, the shape will be ``(C,)``
- If ``multidim_average`` is set to ``samplewise``:
- If ``average='micro'/'macro'/'weighted'``, the shape will be ``(N,)``
- If ``average=None/'none'``, the shape will be ``(N, C)``
If ``multidim_average`` is set to ``samplewise`` we expect at least one additional dimension ``...`` to be present,
which the reduction will then be applied over instead of the sample dimension ``N``.
Args:
num_labels: Integer specifying the number of labels
threshold: Threshold for transforming probability to binary (0,1) predictions
average:
Defines the reduction that is applied over labels. Should be one of the following:
- ``micro``: Sum statistics over all labels
- ``macro``: Calculate statistics for each label and average them
- ``weighted``: calculates statistics for each label and computes weighted average using their support
- ``"none"`` or ``None``: calculates statistic for each label and applies no reduction
multidim_average:
Defines how additionally dimensions ``...`` should be handled. Should be one of the following:
- ``global``: Additional dimensions are flatted along the batch dimension
- ``samplewise``: Statistic will be calculated independently for each sample on the ``N`` axis.
The statistics in this case are calculated over the additional dimensions.
ignore_index:
Specifies a target value that is ignored and does not contribute to the metric calculation
validate_args: bool indicating if input arguments and tensors should be validated for correctness.
Set to ``False`` for faster computations.
Example (preds is int tensor):
>>> from torch import tensor
>>> from torchmetrics.classification import MultilabelAccuracy
>>> target = tensor([[0, 1, 0], [1, 0, 1]])
>>> preds = tensor([[0, 0, 1], [1, 0, 1]])
>>> metric = MultilabelAccuracy(num_labels=3)
>>> metric(preds, target)
tensor(0.6667)
>>> mla = MultilabelAccuracy(num_labels=3, average=None)
>>> mla(preds, target)
tensor([1.0000, 0.5000, 0.5000])
Example (preds is float tensor):
>>> from torchmetrics.classification import MultilabelAccuracy
>>> target = tensor([[0, 1, 0], [1, 0, 1]])
>>> preds = tensor([[0.11, 0.22, 0.84], [0.73, 0.33, 0.92]])
>>> metric = MultilabelAccuracy(num_labels=3)
>>> metric(preds, target)
tensor(0.6667)
>>> mla = MultilabelAccuracy(num_labels=3, average=None)
>>> mla(preds, target)
tensor([1.0000, 0.5000, 0.5000])
Example (multidim tensors):
>>> from torchmetrics.classification import MultilabelAccuracy
>>> target = tensor([[[0, 1], [1, 0], [0, 1]], [[1, 1], [0, 0], [1, 0]]])
>>> preds = tensor(
... [
... [[0.59, 0.91], [0.91, 0.99], [0.63, 0.04]],
... [[0.38, 0.04], [0.86, 0.780], [0.45, 0.37]],
... ]
... )
>>> mla = MultilabelAccuracy(num_labels=3, multidim_average='samplewise')
>>> mla(preds, target)
tensor([0.3333, 0.1667])
>>> mla = MultilabelAccuracy(num_labels=3, multidim_average='samplewise', average=None)
>>> mla(preds, target)
tensor([[0.5000, 0.5000, 0.0000],
[0.0000, 0.0000, 0.5000]])
"""
is_differentiable: bool = False
higher_is_better: bool = True
full_state_update: bool = False
plot_lower_bound: float = 0.0
plot_upper_bound: float = 1.0
plot_legend_name: str = "Label"
def compute(self) -> Tensor:
"""Compute accuracy based on inputs passed in to ``update`` previously."""
tp, fp, tn, fn = self._final_state()
return _accuracy_reduce(
tp, fp, tn, fn, average=self.average, multidim_average=self.multidim_average, multilabel=True
)
def plot(
self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None
) -> _PLOT_OUT_TYPE:
"""Plot a single or multiple values from the metric.
Args:
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results.
If no value is provided, will automatically call `metric.compute` and plot that result.
ax: An matplotlib axis object. If provided will add plot to that axis
Returns:
Figure and Axes object
Raises:
ModuleNotFoundError:
If `matplotlib` is not installed
.. plot::
:scale: 75
>>> from torch import rand, randint
>>> # Example plotting a single value
>>> from torchmetrics.classification import MultilabelAccuracy
>>> metric = MultilabelAccuracy(num_labels=3)
>>> metric.update(randint(2, (20, 3)), randint(2, (20, 3)))
>>> fig_, ax_ = metric.plot()
.. plot::
:scale: 75
>>> from torch import rand, randint
>>> # Example plotting multiple values
>>> from torchmetrics.classification import MultilabelAccuracy
>>> metric = MultilabelAccuracy(num_labels=3)
>>> values = [ ]
>>> for _ in range(10):
... values.append(metric(randint(2, (20, 3)), randint(2, (20, 3))))
>>> fig_, ax_ = metric.plot(values)
"""
return self._plot(val, ax)
class Accuracy(_ClassificationTaskWrapper):
r"""Compute `Accuracy`_.
.. math::
\text{Accuracy} = \frac{1}{N}\sum_i^N 1(y_i = \hat{y}_i)
Where :math:`y` is a tensor of target values, and :math:`\hat{y}` is a tensor of predictions.
This module is a simple wrapper to get the task specific versions of this metric, which is done by setting the
``task`` argument to either ``'binary'``, ``'multiclass'`` or ``multilabel``. See the documentation of
:class:`~torchmetrics.classification.BinaryAccuracy`, :class:`~torchmetrics.classification.MulticlassAccuracy` and
:class:`~torchmetrics.classification.MultilabelAccuracy` for the specific details of each argument influence and
examples.
Legacy Example:
>>> from torch import tensor
>>> target = tensor([0, 1, 2, 3])
>>> preds = tensor([0, 2, 1, 3])
>>> accuracy = Accuracy(task="multiclass", num_classes=4)
>>> accuracy(preds, target)
tensor(0.5000)
>>> target = tensor([0, 1, 2])
>>> preds = tensor([[0.1, 0.9, 0], [0.3, 0.1, 0.6], [0.2, 0.5, 0.3]])
>>> accuracy = Accuracy(task="multiclass", num_classes=3, top_k=2)
>>> accuracy(preds, target)
tensor(0.6667)
"""
def __new__( # type: ignore[misc]
cls: type["Accuracy"],
task: Literal["binary", "multiclass", "multilabel"],
threshold: float = 0.5,
num_classes: Optional[int] = None,
num_labels: Optional[int] = None,
average: Optional[Literal["micro", "macro", "weighted", "none"]] = "micro",
multidim_average: Literal["global", "samplewise"] = "global",
top_k: Optional[int] = 1,
ignore_index: Optional[int] = None,
validate_args: bool = True,
**kwargs: Any,
) -> Metric:
"""Initialize task metric."""
task = ClassificationTask.from_str(task)
kwargs.update({
"multidim_average": multidim_average,
"ignore_index": ignore_index,
"validate_args": validate_args,
})
if task == ClassificationTask.BINARY:
return BinaryAccuracy(threshold, **kwargs)
if task == ClassificationTask.MULTICLASS:
if not isinstance(num_classes, int):
raise ValueError(
f"Optional arg `num_classes` must be type `int` when task is {task}. Got {type(num_classes)}"
)
if not isinstance(top_k, int):
raise ValueError(f"Optional arg `top_k` must be type `int` when task is {task}. Got {type(top_k)}")
return MulticlassAccuracy(num_classes, top_k, average, **kwargs)
if task == ClassificationTask.MULTILABEL:
if not isinstance(num_labels, int):
raise ValueError(
f"Optional arg `num_labels` must be type `int` when task is {task}. Got {type(num_labels)}"
)
return MultilabelAccuracy(num_labels, threshold, average, **kwargs)
raise ValueError(f"Not handled value: {task}")